
 Copyright © Intertech, Inc. 2014 Rev: 11 1

Lab Exercise

Understanding Channels - Lab 1

Channels are an integral part of any Spring Integration application. There are many

channels to choose from. Understanding the basic channel types (subscribable and

pollable) is essential to any Spring Integration developer. In this lab, you explore the basic

channel types and see the default channel at work.

Specifically, in this lab you will:

 Create a new Spring Integration Maven Project

 Define the Spring configuration file.

 Define a Java SE class for running/testing your Spring Integration components.

 Create and test a subscribable channel.

 Create and test a pollable channel.

 Create and test the default Spring Integration channel – the direct channel.

 Lab solution folder: ExpressSpringIntegration\lab1\lab1-channels-solution

Understanding Channels - Lab 1

2 Copyright © Intertech, Inc. 2014 Rev: 11

 Scenario

In this lab, you create your first Spring Integration (SI) project. Specifically, you will create

a standard Maven project. You will use Maven to bring the necessary Spring libraries into

the project. You also create a small SI application that uses several channel types in order

to understand the various types of SI channels.

Step 1: Create a Maven Project

Maven is often used today to easily manage the dependencies of a Java project. Eclipse

provides a “Maven Project” for creating a Maven driven/managed Java application in

Eclipse (or Eclipsed based IDEs like IBM’s Rational Application Developer or the Spring

Tool Suite). In this step, you create a simple Maven project and configure the pom.xml to

setup the required dependencies (namely Spring dependencies) for use in your project.

1.1 Start the Eclipse-based IDE. Locate and start Eclipse (or Eclipse-based) IDE.

1.1.1 Locate the Eclipse folder.

 Note: In Intertech classrooms, Eclipse will be installed in a C:\eclipse folder.

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image

below).

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 3

1.1.3 Create your workspace. When Eclipse launches, you will be asked to select a

workspace. This is the location where your work will be stored. Type in C:\Users\<your

username >\workspace.

 Note: you may use an alternate location for your workspace, but the labs will always

reference this location (c:\users\[your username]\workspace) as the default workspace

location.

Hit the OK button. After clicking the OK button, Eclipse will open.

1.1.4 Close the Welcome tab. When Eclipse opens, close the welcome tab by clicking on

the X on the tab.

Understanding Channels - Lab 1

4 Copyright © Intertech, Inc. 2014 Rev: 11

1.2 Create a new Maven Project. Create a new Eclipse project for this lab work.

1.2.1 Select File>New>Other… from the Eclipse menu bar.

1.2.2 Locate and open the Maven folder in the New, “Select a wizard” window, and then

select Maven Project from the options. Now push the Next> button.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 5

1.2.3 In the “New Maven Project” window, check the Create a simple project (skip

archetype selection) and then push the Next> button.

1.2.4 In the next window, enter the following values for the Artifact entries (as shown in

the picture below) while leaving the default values for version and packaging, and hit the

Finish button:

 Group Id: com.intertech.si
 Artifact Id: lab1-channels
 Name: Spring Integration Lab 1
 Description: Lab 1 – using channels

Understanding Channels - Lab 1

6 Copyright © Intertech, Inc. 2014 Rev: 11

1.3 Add Spring Integration dependencies. Your project needs Spring Integration,

Spring Framework and other libraries. Add the necessary dependencies to the

Maven pom.xml file in order to add the necessary JAR files to your local repository

and to the project build/execution paths.

1.3.1 Expand the newly created lab1-channels project in the Package Explorer view.

Locate and open the pom.xml file in an editor by double clicking on it.

1.3.2 Push on the pom.xml tab in the editor options to open the pom.xml in an XML editor.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 7

1.3.3 Add the following properties and dependencies to the pom.xml. The properties and

dependencies should be inserted after the <description> element in the XML file.

 Note: this code can be copied from the solutions download at

ExpressSpringIntegration\lab1\lab1-channels-helper-code\pom.xml if you do not wish to

enter the text by hand.

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<springframework.version>4.0.4.RELEASE</springframework.version>

<spring.integration.version>4.0.0.RELEASE</spring.integration.version>

<spring.integration.xml.version>4.0.0.RELEASE</spring.integration.xml.

version>

<log4j.version>1.2.17</log4j.version>

</properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-core</artifactId>

 <version>${spring.integration.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-stream</artifactId>

 <version>${spring.integration.version}</version>

 </dependency>

 <dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>${log4j.version}</version>

 </dependency>

 </dependencies>

Note that the dependency list includes Spring Integration (version 4) and Spring Integration

Stream, and Log4J.

1.3.4 Save the pom.xml file and make sure there are no errors in the project.

1.4 Copy the log4j configuration to the project. Your application (and Spring

Integration) will use Log4J for all application logging.

1.4.1 Locate the log4j.xml file located in ExpressSpringIntegration\lab1\lab1-channels-

helpler-code.

Understanding Channels - Lab 1

8 Copyright © Intertech, Inc. 2014 Rev: 11

1.4.2 Copy the file and paste the file in the src/main/resources folder of your Eclipse

project.

1.5 Create a META-INF/spring sub-folder in the resources directory. This folder will

eventually contain your XML Spring configuration files.

1.5.1 Right click on the src/main/resources folder and select New> Folder.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 9

1.5.2 In the New Folder window that displays, make sure the resources folder is still

selected and then enter META-INF/spring as the new folder name and push the Finish button.

Your Maven project is now ready for Spring Integration development.

Understanding Channels - Lab 1

10 Copyright © Intertech, Inc. 2014 Rev: 11

Step 2: Write the Java application.

In this step, you create a simple Java application that will create the Spring

ApplicationContext and then put the JVM in an infinite loop. This will allow the Spring

Integration components to produce, consume and react to messages that it sees while the

JVM is up and running.

 Note: If you do not wish to code this class by hand, you can find the code in Express Spring

Integration\lab1\lab1-channels-helper-code

2.1 Create a new package in src/main/java.

2.1.1 Right click on the src/main/java folder in the Package Explorer and select New >

Package.

2.1.2 Enter com.intertech.lab1 as the new package name and push the Finish button.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 11

2.2 Create the Startup.java class. The Startup.java class will serve as a simple Java SE

application – complete with a main() method. This class will be executed when

the Spring Integration application is to run.

2.2.1 Right click on the newly created com.intertech.lab1 package and select New > Class

from the resulting menu.

2.2.2 In the New Java Class window, enter Startup as the new class name, check the box to

add a main() method and then push the Finish button.

Understanding Channels - Lab 1

12 Copyright © Intertech, Inc. 2014 Rev: 11

2.3 Code the Startup.java class.

2.3.1 In the editor that opens, replace the TODO comment in the main method with the

following code:

ClassPathXmlApplicationContext context = new

ClassPathXmlApplicationContext("/META-INF/spring/si-components.xml");

while (true) {

}

2.3.2 Add the necessary imports to the class. Use Control-Shift-O to add the

ClassPathXmlApplicationContext import to the top of the class.

import

org.springframework.context.support.ClassPathXmlApplicationContext;

2.3.3 Remove the compiler warning by adding an annotation to the main() method to

suppress the warnings.

@SuppressWarnings({ "resource", "unused" })

public static void main(String[] args) {

 ...

}

2.3.4 Save Startup.java and make sure there are no compile errors in the project.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 13

Step 3: Configure the Producer, Consumers, and Subscribable Channel

3.1 Create a Spring XML configuration file to hold all the SI components.

3.1.1 Right click on the spring folder located in src/main/resources/META-INF and select

Other…

3.1.2 In the New window, expand the Spring folder, select Spring Bean Configuration File

and then push the Next> button.

Understanding Channels - Lab 1

14 Copyright © Intertech, Inc. 2014 Rev: 11

3.1.3 In the Create a new Spring Bean Definition file window, make sure the spring folder

is selected, enter “si-components.xml” in the File name field and then push the Finish button.

3.1.4 In the XML editor that opens, select the Source tab to be able to edit the contents.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 15

3.1.5 Enter the integration and stream namespaces to the <beans> root element as

highlighted below.

 Note: if you do not wish to enter the SI configuration elements, you can copy and paste them

from a copy of the si-components.xml located in Express Spring Integration\lab1\lab1-

channels-helper-code.

<beans

xmlns=http://www.springframework.org/schema/beans

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:int="http://www.springframework.org/schema/integration"

xmlns:int-stream=

"http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd">

3.2 Create a SI producer and consumer. In this lab, you will use the Java Standard

Input stream and Standard Output stream as the producer and consumer of

messages through channels. The Standard Input stream provides a means to enter

text (through the Console view) that will become the message that enters the

message channel. The text message will be consumed on the other end of the

message channel and displayed to the Standard Output stream. An adapter

provided by Spring Integration assist getting the message from Standard Input and

enter it into the message channel. Another adapter provided by Spring

Integration will get the message from the channel and display its contents to the

Standard Output stream (the Console view). You will learn about the creation of

adapters in a later lab. For now, just add the adapters that create/display text via

the Standard Input/Output streams.

Understanding Channels - Lab 1

16 Copyright © Intertech, Inc. 2014 Rev: 11

3.2.1 Inside of the <beans> element in the configuration file, enter a stdin-channel-

adapter that wraps the Java Standard Input stream; taking text entered into the Standard

Input stream and putting a text a message into the associated channel.

<int-stream:stdin-channel-adapter id="producer"

 channel="messageChannel" />

3.2.2 Add a poller that is used by the stdin-channel-adapter to determine how often to

check the Standard Input stream for text (in this case, it checks every 200 milliseconds).

<int:poller id="defaultPoller" default="true"

 max-messages-per-poll="5" fixed-rate="200" />

3.2.3 Create a couple of stdout-channel-adapters that wrap the Java Standard Output

stream. They take the messages from the associated channel and display it to the Console.

<int-stream:stdout-channel-adapter

 id="consumer1" channel="messageChannel" append-newline="true" />

<int-stream:stdout-channel-adapter

 id="consumer2" channel="messageChannel" append-newline="true" />

3.3 Create the Subscribable Channel. With the producer and consumers in place, you

are ready to create a channel to deliver the messages from producer to consumers.

In this part of the lab, you create a subscribable channel. Subscribable channels do

not buffer or hold onto messages. They simply deliver them to all the subscribers –

that is the adapters on the consuming end of the channel. Subscribers deliver the

messages to all subscribers. In this case, you have two subscribers – the two

stdout-channel-adapters you created in the previous steps.

3.3.1 Add the publish-subscribe-channel element to the configuration below the adapters.

<int:publish-subscribe-channel id="messageChannel" />

Note that the id of the channel (“messageChannel”) is the same as the channel referenced in

both the stdin-channel-adapter and stdout-channel-adapters above.

3.3.2 Save the configuration file and make sure there are no errors in the project.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 17

3.4 Test the application. With the producer (stdin-adapter-channel), the consumers

(stdout-adapter-channels), and the subscribable channel in place, it is time to test

the application and your first SI channel.

3.4.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu.

Understanding Channels - Lab 1

18 Copyright © Intertech, Inc. 2014 Rev: 11

3.4.2 The application is now running awaiting your text input. In the Console view, enter

some text and then hit the Enter key (by default, your text will be displayed in green). A text

message created from the text you enter into the Standard Input will immediately be

marshalled into a text message and entered into the subscribable channel. Immediately

after that, it will be delivered to the subscribers which display the output back to the

Console view (in black). Since you have two subscribers, you should see the text you entered

echoed back to the Console twice (as shown below). Feel free to enter additional text into

the Standard Input and see more messages enter the channel.

Congratulation! You just created your first Spring Integration application and used the first

message channel.

3.5 Stop the application. Recall the application is running in an infinite loop to allow

for the constant publishing and consuming of messages. Stop the application now.

3.5.1 In the Console view, click on the red square to terminate the Startup application.

3.5.2 The Console view should now indicate that the application is “<terminated>”. Clear

the Console view by clicking on the Clear Console icon.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 19

Step 4: Replace the Subscribable Channel with a Pollable Channel

Subscribable channels don’t buffer messages and deliver the messages to any and all

subscribers. Pollable channels, can buffer messages and deliver the message to a single

subscriber. If there are more than one subscribers, it picks the first subscriber and skips

the others. In this step, you replace the subscriber channel with a pollable channel to see

the effect on the SI application.

4.1 Remove or comment out the Subscribable Channel.

4.1.1 Locate (in the src/main/resources folder) and open the si-components.xml in an

editor by double clicking on the file.

4.1.2 Remove the subscribable channel by placing XML comments around it (<!-- -->).

<!-- <int:publish-subscribe-channel id="messageChannel" /> -->

4.2 Add a Pollable Channel. Pollable channels require a queue for potentially buffering

messages with a configuration determined capacity.

4.2.1 Add the following elements to add the pollable channel with a buffering capacity of

two (2) messages.

<int:channel id="messageChannel">

 <int:queue capacity="2" />

</int:channel>

4.2.2 Save the XML configuration file and make sure there are no errors in the project.

4.3 Retest the application. With the pollable channel in place of the subscribable

channel, rerun the application.

4.3.1 Again locate the Startup.java file in the source folder. Right click on file and select

Run As > Java Application from the resulting menu.

Understanding Channels - Lab 1

20 Copyright © Intertech, Inc. 2014 Rev: 11

4.3.2 The application is now running awaiting your text input. In the Console view, again

enter some text and then hit the Enter key. A text message created from the text you enter

into the Standard Input will immediately be marshalled into a text message and entered into

the pollable channel. This time, however, the message is only delivered to a single (the first)

consumer of the messages from the channel. Note that the text is only echoed one time.

4.3.3 Terminate the application and clear Console view.

4.4 Remove the Producer and Consumer. In order to see the buffering of messages, it

is necessary to change the producers and consumers. By default, they

automatically publish and pull messages from the pollable channel without giving

you a chance to see the messages stack up in the queue associated with the

channel. In this step, you use the Statup.java file to publish messages onto the

channel. Without a consumer, this will allow you to see messages stack up (and

fill) in the pollable channel’s queue.

4.4.1 Locate (in the src/main/resources folder) and open the si-components.xml in an

editor by double clicking on the file.

4.4.2 Comment out the producer (stdin-channel-adapter) and consumer (stdout-channel-

adapter) adapters.

<!-- <int-stream:stdin-channel-adapter id="producer" -->

<!-- channel="messageChannel" /> -->

<!-- <int-stream:stdout-channel-adapter -->

<!-- id="consumer1" channel="messageChannel" append-newline="true"

/> -->

<!-- <int-stream:stdout-channel-adapter -->

<!-- id="consumer2" channel="messageChannel" append-newline="true"

/> -->

4.4.3 Save the configuration file and make sure there are no errors in the project.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 21

4.5 Add code to Startup to produce messages into the Pollable Channel.

4.5.1 Locate and open the Startup.java file in an editor (in the src/main/java folder) by

double clicking on the file.

4.5.2 Comment out the infinite loop.

// while (true) {

// }

4.5.3 Add the following code to programmatically add three messages into the pollable

channel.

public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 // while (true) {

 // }

 MessageChannel channel = context.getBean("messageChannel",

 MessageChannel.class);

 Message<String> message1 = MessageBuilder.withPayload(

 "Hello world - one!").build();

 Message<String> message2 = MessageBuilder.withPayload(

 "Hello world - two!").build();

 Message<String> message3 = MessageBuilder.withPayload(

 "Hello world - three!").build();

 System.out.println("sending message1");

 channel.send(message1);

 System.out.println("sending message2");

 channel.send(message2);

 System.out.println("sending message3");

 channel.send(message3);

 System.out.println("done sending messages");

}

4.5.4 Add the necessary imports (all imports required are shown below) by hitting

Control-Shift-O.

import

org.springframework.context.support.ClassPathXmlApplicationContext;

import org.springframework.integration.support.MessageBuilder;

import org.springframework.messaging.Message;

import org.springframework.messaging.MessageChannel;

4.5.5 Optionally, you can also remove the “unused” portion of the @SuppressWarnings

annotation.

@SuppressWarnings({ "resource", "unused" })

4.5.6 Save the class and make sure there are no compile errors in the project.

Understanding Channels - Lab 1

22 Copyright © Intertech, Inc. 2014 Rev: 11

4.6 Retest the application (and see the queue limit being reached).

4.6.1 Again locate the Startup.java file in the source folder. Right click on file and select

Run As > Java Application from the resulting menu.

4.6.2 This time, the application does not require your input (the messages are added to

the pollable channel by the Startup code). Look in the Console view to see what is

happening.

Notice that the System outputs show the sending of messages, but not the last output before

the application ends (the “done sending messages” text). Why? The queue is only two deep.

The application is waiting for a consumer to empty a message out of the channel so the last

message can be placed into the channel. The pollable channels are buffered, but only as big

as you set their capacity.

4.6.3 Terminate the application and clear Console view.

Step 5: Replace the Pollable Channel with a Direct Channel

Direct channels are the default channel type in SI. It is a subscribable channel but it acts

more like a point-to-point channel (like a pollable channel). In other words, it will send its

message to a single subscriber (like a pollable channel). In this step, you replace the

pollable channel with a direct channel.

5.1 Return the Producer and Consumer adapters. Return the Standard Input and

Output adapters to the configuration file. The adapters will again be used to push

a message into the channel and remove the message from the channel.

5.1.1 Locate (in the src/main/resources folder) and open the si-components.xml in an

editor by double clicking on the file.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 23

5.1.2 Uncomment the producer (stdin-channel-adapter) and consumer (stdout-channel-

adapter) adapters.

<int-stream:stdin-channel-adapter id="producer"

 channel="messageChannel" />

<int-stream:stdout-channel-adapter

 id="consumer1" channel="messageChannel" append-newline="true" />

<int-stream:stdout-channel-adapter

 id="consumer2" channel="messageChannel" append-newline="true" />

5.1.3 Save the configuration file and make sure there are no errors in the project.

5.2 Remove the message producing code in Startup. Return the Startup.java class to

its original code.

5.2.1 Remove the message producing code and uncomment the infinite while loop in the

main() method. The main() method should look like that below when finished.

public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

 ClassPathXmlApplicationContext("/META-INF/spring/si-

components.xml");

 while (true) {

 }

}

5.2.2 Remove any unnecessary imports from the class. The following is the only import

required.

import

org.springframework.context.support.ClassPathXmlApplicationContext;

5.2.3 You may optionally want to return the @SuppressWarnings annotation to its

original form as well.

@SuppressWarnings({ "resource", "unused" })

5.2.4 Save the file and make sure there are no compile errors.

Understanding Channels - Lab 1

24 Copyright © Intertech, Inc. 2014 Rev: 11

5.3 Replace the Pollable Channel with a Direct Channel.

5.3.1 In the si-components.xml file, remove the queue from the pollable channel (the

“messageChannel”) in order to create a direct channel. Direct channels are the default

implementation for <int:channel> when using SI XML configuration.

<int:channel id="messageChannel">

 <!-- <int:queue capacity="2" /> -->

</int:channel>

5.3.2 Save the configuration file and make sure there are no errors in the project.

5.4 Retest the application. One last time, run Startup.java as a Java application.

5.4.1 Right click on file and select Run As > Java Application from the resulting menu.

5.4.2 The application is now running awaiting your text input. In the Console view, again

enter some text and then hit the Enter key. A text message created from the text you enter

into the Standard Input will immediately be marshalled into the direct channel. Notice how

the message is only delivered to a single (the first) consumer of the messages (like a pollable

channel but without a queue!). Note that the text is only echoed one time.

5.4.3 Terminate the application and clear Console view.

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 25

5.5 Recall that SI implements the Hohpe/Woolf Enterprise Integration Patterns (EIP).

Therefore, when designing or documenting a Spring Integration application, we

represent the SI components in a model diagram using Hohpe Enterprise

Integration Pattern (EIP) icons. There are several tools that can be used to create

the diagrams.

 You can download a Hohpe/Woolf Visio stencil set that can be used with Microsoft

Visio to create the diagrams (http://www.eaipatterns.com/downloads.html).

 If you are using Spring Tool Suite (STS), the XML configuration file will

automatically be displayed in an EIP diagram as you assemble your components

in XML. If using STS, open the configuration file and then click on the integration-

graph tab. Below is the EIP model diagram for the application created in this lab.

Channels make up a significant part of any SI project. They provide the pipes between all

the working components of an EAI project. Transformers, filters, enrichers, etc. may do the

business work of a SI application, but it is channels that get information and process

requests to these components. You have now seen three different type of channels

(publish-subscribe, pollable, and direct channels) in SI and seen some of the differences in

how they behave and operate. There are other types of channels in SI, but they all descend

from either subscribable or pollable channels which you have now learned.

Understanding Channels - Lab 1

26 Copyright © Intertech, Inc. 2014 Rev: 11

Lab Solution

Startup.java (in its final form)

package com.intertech.lab1;

import

org.springframework.context.support.ClassPathXmlApplicationContext;

//import org.springframework.integration.support.MessageBuilder;

//import org.springframework.messaging.Message;

//import org.springframework.messaging.MessageChannel;

public class Startup {

 @SuppressWarnings({ "resource", "unused" })

 // @SuppressWarnings({ "resource" })

 public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 while (true) {

 }

 // MessageChannel channel = context.getBean("messageChannel",

 // MessageChannel.class);

 // Message<String> message1 = MessageBuilder.withPayload(

 // "Hello world - one!").build();

 // Message<String> message2 = MessageBuilder.withPayload(

 // "Hello world - two!").build();

 // Message<String> message3 = MessageBuilder.withPayload(

 // "Hello world - three!").build();

 // System.out.println("sending message1");

 // channel.send(message1);

 // System.out.println("sending message2");

 // channel.send(message2);

 // System.out.println("sending message3");

 // channel.send(message3);

 // System.out.println("done sending messages");

 }

}

Understanding Channels - Lab 1

 Copyright © Intertech, Inc. 2014 Rev: 11 27

si-components.xml (in final form)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

 http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd">

 <!-- message producer / a Spring Integration wrapped Java Standard

input stream -->

 <int-stream:stdin-channel-adapter id="producer"

 channel="messageChannel" />

 <!-- a pair of message consumers / a pair of Spring Integration

wrapped Java Standard output streams -->

 <int-stream:stdout-channel-adapter

 id="consumer1" channel="messageChannel" append-newline="true" />

 <int-stream:stdout-channel-adapter

 id="consumer2" channel="messageChannel" append-newline="true" />

 <int:poller id="defaultPoller" default="true"

 max-messages-per-poll="5" fixed-rate="200" />

 <!-- a pub/sub message channel -->

 <!-- <int:publish-subscribe-channel id="messageChannel" /> -->

 <!-- a direct channel without the queue, a pollable channel with the

queue -->

 <int:channel id="messageChannel">

 <!-- <int:queue capacity="2" /> -->

 </int:channel>

</beans>

