
 Copyright © Intertech, Inc. 2014 Rev: 9 1

Lab Exercise

Filters - Lab 3

Not all messages are of interest. That is, there is often a need to filter out some messages

that enter a channel. Applications may only want to get messages formatted in a certain

way (XML or JSON). Applications may only be interested in certain types of data (new sales

messages but not messages about shipments). Other application may be interested in

messages with certain message headers (for example when a message was created – only

wanting to look at messages created after 5pm).

In this lab, you explore Spring Integration (SI) filters to examine messages in a channel and

accept those of interest and discard the others.

Specifically, in this lab you will:

 Implement the SI MessageSelector interface and configure an SI filter.

 Explore and configure a built-in SI XPath filter to sort XML messages.

 Work with a built-in SI Validation filter to week out non-validating XML messages.

 Lab solution folder: ExpressSpringIntegration\lab3\lab3-filters-solution & lab3-

xml-filters-solution

Filters - Lab 3

2 Copyright © Intertech, Inc. 2014 Rev: 9

 Scenario – Filter File Messages

In this lab, you explore filters. You will work with two different Eclipse projects to explore

filters. In the first project, you filter File messages (messages with File payload) looking for

those File names that begin with a specified string. You provide the filter’s logic by

implementing the MessageSelector interface and configuring the filter in XML.

In the second project, you use two built-in SI filters to weed through XML messages that

contain expected element data or don’t validate (by XML Schema).

Step 1: Import the Maven Project

A Maven Project containing the base code for a File filtering application has already been

created for you. You will use this project to begin your exploration of filters.

1.1 Start the Eclipse-based IDE. Locate and start Eclipse (or Eclipse-based) IDE.

1.1.1 Locate the Eclipse folder.

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image

below).

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 3

1.1.3 Open your workspace. Type in C:\Users\<your username >\workspace and click the

OK button.

 Note: As noted in the past labs, you may use an alternate location for your workspace, but the

labs will always reference this location (c:\users\[your username]\workspace) as the default

workspace location.

1.2 Import the new Maven Project.

1.2.1 Select File>Import… from the Eclipse menu bar.

Filters - Lab 3

4 Copyright © Intertech, Inc. 2014 Rev: 9

1.2.2 Locate and open the General folder in the Import window, and then select Existing

Projects into Workspace Project from the options. Now push the Next> button.

1.2.3 In the “Import” window, use the Browse… button to locate the lab3-filters-starter

project folder located in ExpressSpringIntegration\lab3 (this folder is located in the lab

downloads). Make sure the project is selected, and the “Copy projects into workspace”

checkbox is also checked before you hit the Finish button (as shown below).

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 5

1.3 Explore the project. Examine the project for the Spring Integration components

that are already present.

1.3.1 Examine the Startup.java. Expand the src/main/java folder in the Project Explorer

view, and open the Startup.java file by double clicking on it. As in past labs, the Startup.java

class is used to put the application in an infinite loop so that the SI components can do their

work.

1.3.2 Examine the SI configuration. Expand the src/main/resources/META-INF/spring

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.

The si-components.xml file contains the Spring configuration that includes the definitions

for several SI components already.

1.3.3 In particular, note that a file inbound and outbound adapter are already defined in

the configuration file. In addition, two channels are defined – as represented in the EIP

diagram below.

Note that no connection exists between the inbound and outbound channels at this time.

Filters - Lab 3

6 Copyright © Intertech, Inc. 2014 Rev: 9

Step 2: Create the MessageSelector

Filters use a MessageSelector under the covers to accept or reject messages from a message

channel. In other words, the MessageSelector provides the business logic for determining

which messages are filtered and those that are not. In this step, you create a

MessageSelector – weeds out File messages where the File name does not start with a

particular string.

2.1 Create the FileSelector.

2.1.1 Locate the com.intertech.lab3 package, right click on it and select New > Class from

the resulting menu.

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 7

2.1.2 In the New Java Class window, enter FileSelector as the class name and add the

org.springframework.integration.core.MessageSelector to the Interfaces list.

Notice that the wizard creates an accept(Message<?>) method that must be implemented for

the interface.

2.2 Code the accept() method. Enter the following code for the method.

public boolean accept(Message<?> message) {

 if (message.getPayload() instanceof File

 && ((File) message.getPayload()).getName().startsWith("msg")) {

 return false;

 }

 return true;

}

Note that the method checks for the type of payload in the message. If it is a File payload and

starts with the filename of “msg”, the message is rejected.

 Note: if you get stuck or feel like not typing in all the code yourself, you will find a working

copy of the final FileSelector file at ExpressSpringIntegration\lab3\lab3-filters-solution.

Filters - Lab 3

8 Copyright © Intertech, Inc. 2014 Rev: 9

2.2.1 Add the java.io.File import to the list of imports in the class.

import java.io.File;

import org.springframework.integration.core.MessageSelector;

import org.springframework.messaging.Message;

2.2.2 Save the class and make sure there are not compile errors.

Step 3: Add the Filter to the SI Components

Add a new filter component to the Spring Integration XML configuration. The filter will use

the MessageSelector implementation you just created.

3.1 Add the FileSelector bean.

3.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open

it by double clicking on the file.

3.1.2 Add a Spring bean of the FileSelector type, as shown below, into the configuration.

<bean id="selector" class="com.intertech.lab3.FileSelector" />

3.2 Add a SI filter component.

3.2.1 In the same si-components.xml file, add a SI filter that takes a message from the

inbound channel, filters it and puts accepted messages in the outbound channel.

<int:filter input-channel="inboundChannel"

output-channel="outboundChannel" ref="selector" />

Note that the filter reference the selector bean.

 Note: if you get stuck or feel like not typing in all the code yourself, you will find a working

copy of the final si-component.xml file at ExpressSpringIntegration\lab3\lab3-filters-

solution\si-component.xml.

3.2.2 Save the configuration file and make sure there are no errors in the file.

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 9

Step 4: Test the Filter

Add messages into the inbound file folder and then test the application to see the filter do

its job.

4.1 Add the files to the inbound message folder.

4.1.1 In the si-components.xml, find the producer-file-adapter. Note the location of the

directory. It is set, by default, to file:c://inbound. This is the location where messages will

be taken into the application by the adapter. Create this message folder - changing the

location to suit your needs and your file system (change the producer-file-adapter to reflect

your location).

4.1.2 Add files into the inbound message folder. Make sure some (at least one) file has a

name that begins with “msg”. Make sure some (at least one) file has a name that does not

begin with “msg”.

4.1.3 In the si-components.xml, also locate the outbound-channel-adapter. Note the

location of the directory. It is set, by default, to file:c://outbound. This is the location where

accepted messages will be deposited. Create the outbound folder in your file system. You

can use a different folder name if you are also willing to change the adapter’s directory

name.

4.2 Test the application. Test the application to see the Files in the inbound file folder

are filtered based on file name.

4.2.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu. Nothing should display in the Console view.

Filters - Lab 3

10 Copyright © Intertech, Inc. 2014 Rev: 9

4.2.2 Using a Windows Explorer, open the folder specified as the File output adapter’s

directory (in step 4.1.3 above). See that the accepted messages are now in the folder.

Rejected messages (files with names that begin with “msg”) have been filtered and not in the

folder.

4.3 Stop the application. Recall the application is running in an infinite loop to allow

for the constant publishing and consuming of messages. Stop the application now.

4.3.1 In the Console view, click on the red square to terminate the Startup application.

4.3.2 The Console view should now indicate that the application is “<terminated>”. Clear

the Console view by clicking on the Clear Console icon.

4.3.3 Below is the EIP model for your completed application.

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 11

 Scenario – Filter XML Messages with XPath

XML is popular in many messaging systems to include Spring Integration. XML describes

the data while also providing the data. When dealing with many messages, it can be

inconvenient to convert the XML messages to objects or even strings and parse the data for

relevant messages. Spring Integration already comes with a built-in XPath filter that allows

you to define a filter with an XPath expression to select only messages of interest.

Step 5: Import the Maven Project

XML is popular in many messaging systems to include Spring Integration. XML describes

the data while also providing the data. When dealing with many messages, it can be

inconvenient to convert the XML messages to objects or even strings and parse the data for

relevant messages. Spring Integration already comes with a built-in XPath filter that allows

you to define a filter with an XPath expression to select only messages of interest.

A Maven Project containing the base code for an XPath filtering application has already

been created for you. You will use this project to begin your exploration of filters.

5.1 Import the new Maven Project.

5.1.1 Select File>Import… from the Eclipse menu bar.

Filters - Lab 3

12 Copyright © Intertech, Inc. 2014 Rev: 9

5.1.2 Locate and open the General folder in the Import window, and then select Existing

Projects into Workspace Project from the options. Now push the Next> button.

5.1.3 In the “Import” window, use the Browse… button to locate the lab3-xml-filters-

starter project folder located in ExpressSpringIntegration\lab3 (this folder is located in the

lab downloads). Make sure the project is selected, and the “Copy projects into workspace”

checkbox is also checked before you hit the Finish button (as shown below).

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 13

5.2 Explore the project. Examine the project for the Spring Integration components

that are already present.

5.2.1 Examine the Startup.java. Expand the src/main/java folder in the Project Explorer

view, and open the Startup.java file by double clicking on it. As in past labs, the Startup.java

class is used to put the application in an infinite loop so that the SI components can do their

work.

5.2.2 Examine the SI configuration. Expand the src/main/resources/META-INF/spring

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.

The si-components.xml file contains the Spring configuration that includes the definitions

for several SI components already.

5.2.3 In particular, note that again, a file inbound and outbound adapter are already

defined in the configuration file. In addition, three channels are defined – as represented in

the EIP diagram below.

Note that no connection exists between the inbound and outbound channels exist at this

time.

Filters - Lab 3

14 Copyright © Intertech, Inc. 2014 Rev: 9

Step 6: Add an XPath filter

6.1 Add the file to string transformer.

You will learn more about transforms in an upcoming tutorial. There are many types of

transformer message endpoints. Spring provides one called a file-to-string transformer.

This transformer turns a file message (that is a SI message with a file as its payload) into a

string message (a SI message with a string as its payload). The string that fills the resulting

message is from the contents of the file.

Why is this important? In order for an XPath filter to accept or reject the XML in a message,

it must first be able to access the XML contents rather than the file that holds the XML.

6.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open

it by double clicking on the file.

6.1.2 Add the file to string transformer to the configuration. Attach the transformer to the

inboundChannel message channel and the outbound xml-inboundChannel.

<int-file:file-to-string-transformer

 id="file-2-string-transformer" input-channel="inboundChannel"

 output-channel="xml-inboundChannel" charset="UTF-8" />

 Note: if you get stuck or feel like not typing in all the code yourself, you will find a working

copy of the final si-component.xml file at ExpressSpringIntegration\lab3\lab3-xml-filters-

solution\si-component.xml.

6.2 Add a SI XPath filter component. While you could build a custom filter using a

MessageSelector implementation (like you did in the first part of this lab), SI

already comes with a built-in XPath filter. That way, you can filter XML messages

without having to write code to parse the message and digest its contents with

your own complex String manipulation code.

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 15

6.2.1 Note that the configuration file already contains the Spring Integration XML

namespace at the top of the file.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-file=

 "http://www.springframework.org/schema/integration/file"

 xmlns:int-mail=

 "http://www.springframework.org/schema/integration/mail"

 xmlns:int-xml=

 "http://www.springframework.org/schema/integration/xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int-stream=

 "http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd

http://www.springframework.org/schema/integration/file

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd

http://www.springframework.org/schema/integration/xml

http://www.springframework.org/schema/integration/xml/spring-

integration-xml.xsd">

6.2.2 Add an SI XPath expression component that defines the content in the XML message

you are looking for. This is not the filter itself, but is the expression component that defines

the XPath expression that the filter will use to filter. In this case, the expression says you are

looking for a <country> element in the message that contains the content of “USA”.

<int-xml:xpath-expression id="filterXpathExp"

 expression="//country='USA'"></int-xml:xpath-expression>

 Note: if you are looking for more help on XPath, see http://www.w3schools.com/XPath/.

Filters - Lab 3

16 Copyright © Intertech, Inc. 2014 Rev: 9

6.3 Add an SI XPath filter component.

6.3.1 In the si-components.xml file, add a SI XPath filter that takes a message from the

XML inbound channel, uses the XPath expression component above to filter the XML

messages and puts accepted messages in the outbound channel.

<int-xml:xpath-filter id="xpathFilter"

 input-channel="xml-inboundChannel" match-type="exact"

 output-channel="outboundChannel"

 xpath-expression-ref="filterXpathExp">

</int-xml:xpath-filter>

Note that the filter references the XPath expression component.

6.3.2 Save the configuration file and make sure there are no errors in the file.

Step 7: Test the XPath Filter

Add XML messages into the inbound file folder and then test the application to see the filter

do its job.

7.1 Add the files to the inbound message folder.

7.1.1 In the si-components.xml, find the producer-file-adapter. Note the location of the

directory. It is set, by default, to file:c://inboundXML. This is the location where messages

will be taken into the application by the adapter. Create this message folder - changing the

location to suit your needs and your file system (change the producer-file-adapter to reflect

your location).

7.1.2 Some sample XML messages have been provided to you. Find them in the

ExpressSpringIntegration\lab3 folder.

If you open the 3 messages, you will note that each are demo shipment orders. Each contain

a <country> element. One of the messages has a country element that has USA as the

country (satisfying the XPath expression). Copy the messages from the example-xml-

messages to the inboundXML folder.

 Note that the outbound location is the same as in the last part of this lab.

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 17

7.2 Test the application. Test the application to see the files in the inboundXML file

folder are filtered based on <country> element content.

7.2.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu. Nothing should display in the Console view.

7.2.2 Using a Windows Explorer, open the folder specified as the File output adapter’s

directory. See that the accepted messages are now in the folder. Rejected messages (files

with names that do not contain a <<country> with content of USA) have been filtered and not

in the folder.

7.3 Stop the application. Recall the application is running in an infinite loop to allow

for the constant publishing and consuming of messages. Stop the application now.

7.3.1 In the Console view, click on the red square to terminate the Startup application.

7.3.2 The Console view should now indicate that the application is “<terminated>”. Clear

the Console view by clicking on the Clear Console icon.

7.3.3 Below is the EIP diagram for your completed application.

Step 8: Create a validation filter

SI also comes with a ready-made validating filter. When dealing with XML messages that

are supposed to conform to an XML schema, it is often helpful to weed out XML messages

that do not conform to the schema. Using SI’s built-in validating filter, all you have to do is

specify the location of the appropriate schema (.xsd) file and XML messages are filtered out

of a channel when they do not align with the schema definition.

Filters - Lab 3

18 Copyright © Intertech, Inc. 2014 Rev: 9

8.1 Locate the schema file in the project. A schema file for validating the shiporder

XML messages has already been created for you and added to the project.

8.1.1 Locate the shiporder.xsd file in the src/main/resources/META-INF folder in the lab3

project.

8.1.2 Open the schema by double clicking on the file to explore its contents. This schema

file defines the legal XML elements and attributes for a shiporder message.

 Note: If you would like to learn more about XML schemas and their use, see

http://www.w3schools.com/schema/default.asp.

8.2 Add a validating filter. By this point in the tutorials, you have started to work

enough with SI applications and SI components to start to get a feel for how they

are configured and how the framework works. So it is time to put some of those

skills to the test. Replace the XPath filter with a validating filter to accept only

those XML shiporder messages that comply with the schema you saw in step 8.1.

The basic template is shown below. You need to supply the in and out message

channels along with the location of the schema file it is to use to do the filtering.

<int-xml:validating-filter id="validation-filter"

 input-channel=" " output-channel=" "

 schema-location=" ">

</int-xml:validating-filter>

 Note: If you get stuck, consult the solutions for this lab.

8.3 Test the application. Make sure the outbound file folder is clear of messages

before testing the application. Then start the application and insure that only the

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 19

valid messages are moved to the outbound folder. You should find two of the

messages (out of the 3 original messages) are valid.

Filters are another type of Spring Integration message endpoint. They help to constrain the

messages that enter other SI components or another applications. SI comes with many

built-in filters, but you have also seen in this lab how to create your own custom filter with

a MessageSelector implementation.

Filters - Lab 3

20 Copyright © Intertech, Inc. 2014 Rev: 9

Lab Solution

si-components.xml - for the File filter lab

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-

file="http://www.springframework.org/schema/integration/file"

 xmlns:int-

mail="http://www.springframework.org/schema/integration/mail"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

 http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd

 http://www.springframework.org/schema/integration/file

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd">

 <!-- Adapter for reading files -->

 <int-file:inbound-channel-adapter id="producer-file-adapter"

 channel="inboundChannel" directory="file:c://inbound"

 prevent-duplicates="true">

 <int:poller fixed-rate="5000" />

 </int-file:inbound-channel-adapter>

 <int:channel id="inboundChannel" />

 <int:filter input-channel="inboundChannel" output-

channel="outboundChannel"

 ref="selector" />

 <bean id="selector" class="com.intertech.lab3.FileSelector" />

 <!-- a direct channel -->

 <int:channel id="outboundChannel" />

 <!-- Adapter for writing files -->

 <int-file:outbound-channel-adapter

 channel="outboundChannel" id="consumer-file-adapter"

directory="file:c://outbound" />

 <int:poller id="defaultPoller" default="true"

 max-messages-per-poll="5" fixed-rate="200" />

</beans>

Filters - Lab 3

 Copyright © Intertech, Inc. 2014 Rev: 9 21

FileSelector.java

package com.intertech.lab3;

import java.io.File;

import org.springframework.integration.core.MessageSelector;

import org.springframework.messaging.Message;

public class FileSelector implements MessageSelector {

 public boolean accept(Message<?> message) {

 if (message.getPayload() instanceof File

 && ((File) message.getPayload()).getName().startsWith("msg"))

{

 return false;

 }

 return true;

 }

}

si-components.xml – for the XML filters lab

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-

file="http://www.springframework.org/schema/integration/file"

 xmlns:int-

mail="http://www.springframework.org/schema/integration/mail"

 xmlns:int-

xml="http://www.springframework.org/schema/integration/xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

 http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd

 http://www.springframework.org/schema/integration/file

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd

 http://www.springframework.org/schema/integration/xml

http://www.springframework.org/schema/integration/xml/spring-

integration-xml.xsd">

 <int-file:inbound-channel-adapter id="producer-file-adapter"

 channel="inboundChannel" directory="file:c://inboundXML"

 prevent-duplicates="true">

 <int:poller fixed-rate="5000" />

 </int-file:inbound-channel-adapter>

Filters - Lab 3

22 Copyright © Intertech, Inc. 2014 Rev: 9

 <int:channel id="inboundChannel" />

 <int-file:file-to-string-transformer

 id="file-2-string-transformer" input-channel="inboundChannel"

 output-channel="xml-inboundChannel" charset="UTF-8" />

 <int:channel id="xml-inboundChannel" />

 <!-- <int-xml:xpath-filter id="xpathFilter" -->

 <!-- input-channel="xml-inboundChannel" match-type="exact" output-

channel="outboundChannel" -->

 <!-- xpath-expression-ref="filterXpathExp"> -->

 <!-- </int-xml:xpath-filter> -->

 <!-- <int-xml:xpath-expression id="filterXpathExp" -->

 <!-- expression="//country='USA'"></int-xml:xpath-expression> -->

 <int-xml:validating-filter id="validation-filter"

 input-channel="xml-inboundChannel" output-

channel="outboundChannel"

 schema-location="META-INF/shiporder.xsd">

 </int-xml:validating-filter>

 <int:channel id="outboundChannel" />

 <int-file:outbound-channel-adapter

 channel="outboundChannel" id="consumer-file-adapter"

directory="file:c://outbound" />

 <int:poller id="defaultPoller" default="true"

 max-messages-per-poll="5" fixed-rate="200" />

</beans>

