Lab Exercise

Filters - Lab 3

Not all messages are of interest. That is, there is often a need to filter out some messages
that enter a channel. Applications may only want to get messages formatted in a certain
way (XML or JSON). Applications may only be interested in certain types of data (new sales
messages but not messages about shipments). Other application may be interested in
messages with certain message headers (for example when a message was created - only
wanting to look at messages created after 5pm).

In this lab, you explore Spring Integration (SI) filters to examine messages in a channel and
accept those of interest and discard the others.

Specifically, in this lab you will:
¢ Implement the SI MessageSelector interface and configure an SI filter.
e Explore and configure a built-in SI XPath filter to sort XML messages.

e Work with a built-in SI Validation filter to week out non-validating XML messages.

@ Lab solution folder: ExpressSpringIntegration\lab3\lab3-filters-solution & lab3-
xml-filters-solution

Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

i —]

]
LI]J Scenario - Filter File Messages

In this lab, you explore filters. You will work with two different Eclipse projects to explore
filters. In the first project, you filter File messages (messages with File payload) looking for
those File names that begin with a specified string. You provide the filter’s logic by
implementing the MessageSelector interface and configuring the filter in XML.

In the second project, you use two built-in SI filters to weed through XML messages that
contain expected element data or don’t validate (by XML Schema).

Step 1: Import the Maven Project

A Maven Project containing the base code for a File filtering application has already been
created for you. You will use this project to begin your exploration of filters.

1.1 Start the Eclipse-based IDE. Locate and start Eclipse (or Eclipse-based) IDE.
1.1.1 Locate the Eclipse folder.

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image

below).
LS | L1 T | Application Tools)
“ Home Share View Manage (
@ —_— » ThisPC b Local Disk (C:) » eclipse L\
> adt-bundle-windows-x86_t ™ Name - 2 (
> | apache-maven-3.2.1 .echpseproduct Q
> | chocolatey <) artifacts /
> eclipse | @ eclipse
, hsqldb o] eclipse
| Intel i1 eclipsec
murach () epl-v10
Perflogs @ notice v
> Pronram Files 7 < >
13 items 1 item selected 305 KB

2 Copyright © Intertech, Inc. 2014 Rev: 9

1.1.3 Openyour workspace. Type in C:\Users\<your username >\workspace and click the
OK button.

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Vel LN C:\ Users\yourname\workspace|

[T] Use this as the default and do not ask again

Filters - Lab 3

Z Note: As noted in the past labs, you may use an alternate location for your workspace, but the
labs will always reference this location (c:\users\[your username]\workspace) as the default

workspace location.

1.2 Import the new Maven Project.

1.2.1 Select File>Import... from the Eclipse menu bar.

File | Edit Source Refactor Mavigate Search Project Crapd] Agit
New Alt+Shift+N » | o=
Open File...

]

Close Ctrl+W
Close All Ctrl+Shift+W

Save Ctrl+5
Save As...

Save All Ctrl+Shift+S
Revert

Move...

Rename... F2

&) Refresh F5
Convert Line Delimiters To 4
Print... Ctrl+P
Switch Workspace 4
Restart

5 Export...

Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

=

1.2.2 Locate and open the General folder in the Import window, and then select Existing

Projects into Workspace Project from the options. Now push the Next> button.

Select

Create new projects from an archive file or directory.

Select an import source:

‘ type filter text

4 (= General
[T Archive File

|@ Existing Projects into Worlspace| h

(5, File System

E. Preferences
v = CVS
1 = EIB

1.2.3 In the “Import” window, use the Browse... button to locate the lab3-filters-starter

project folder located in ExpressSpringlntegration\lab3 (this folder is located in the lab
downloads). Make sure the project is selected, and the “Copy projects into workspace”
checkbox is also checked before you hit the Finish button (as shown below).

Projects:

x
Import Projects B
Select a directory to search for existing Eclipse projects. -
(®) Select root directory: | C\Users\jwhite\Dropbox\Intertech\Books\Express Spring Integration\labs\ExpressSpringlntegration\lab3\lab3-filters-starter v ‘ ‘ Browse... |
() Select archive file: Browse...

lab3-filters (C\Users\jwhite\Dropbaox\Intertech\Books\Express Spring Integration\labs\ExpressSpringintegration\lab3\lab3-filters-starter)

Select All
Deselect All
Refresh

Options

["] Search for nested projects
Copy projects into workspace

‘Working sets
[C] Add praject to working sets
Working sets:

Select...

Next > ‘ Finish | | Cancel

Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

1.3 Explore the project. Examine the project for the Spring Integration components
that are already present.

1.3.1 Examine the Startup.java. Expand the src/main/java folder in the Project Explorer
view, and open the Startup.java file by double clicking on it. As in past labs, the Startup.java
class is used to put the application in an infinite loop so that the SI components can do their

work.

[# Package Explorer 22
- i lab2-adapters-solution
2 |lab3-filters-starter
4 [sre/mainfjava
4t comiintertech.lab3
- [3 Startupjava 3
| logd).xml
¢/main/resources

@

1.3.2 Examine the SI configuration. Expand the src/main/resources/META-INF/spring
folder in the Project Explorer view, and open si-components.xml file by double clicking on it.
The si-components.xml file contains the Spring configuration that includes the definitions

for several SI components already.

f# Package Explorer &2 E=
+ i lab2-adapters-solution
+ [b3 iers-starter
4 (& src/main/java
4 1 com.intertech.lab3
- [4 Startup.java
%] log4jxml
4 # src/main/resources
4 = META-INF
4 [= spring
¥ si-components.xml h
[src/test/java
src/ftest/resources

2
¢

1.3.3 In particular, note that a file inbound and outbound adapter are already defined in
the configuration file. In addition, two channels are defined - as represented in the EIP

diagram below.

Td—= ==

producer-file-adapter inboundChannel outboundChannel consumer-file-adapter

Note that no connection exists between the inbound and outbound channels at this time.

Copyright © Intertech, Inc. 2014 Rev: 9 5

Filters - Lab 3

Step 2: Create the MessageSelector

Filters use a MessageSelector under the covers to accept or reject messages from a message
channel. In other words, the MessageSelector provides the business logic for determining
which messages are filtered and those that are not. In this step, you create a
MessageSelector - weeds out File messages where the File name does not start with a
particular string.

2.1 Create the FileSelector.

2.1.1 Locate the com.intertech.lab3 package, right click on it and select New > Class from

the resulting menu.

4 [sr¢/main/java
4 |t com.intertech.lab3
» 1) Startupjava New » 2 Java Project
%] log4jxml Go Into T4 Project..

4 [sre/main/resources Open in New Window Package

&
“ & META-INF Open Type Hierarchy F4 & Class h

oo
* = spring Show In Alt+Shiftew s | & Interface

|X] si-componel
(## src/ftest/java

& Enum
Copy Cwl+C @ Annotation

(£ src/test/resources 2 Copy Qualified Name o)

Source Folder
JW\M wmdR 2 Working Set

6 Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

2.1.2 Inthe New Java Class window, enter FileSelector as the class name and add the

org.springframework.integration.core.MessageSelector to the Interfaces list.

{H New Java Class - B “
Java Class (_)

Create a new Java class.

Source folder: lab3-filters-starter/src/main/java Browse...

Package: com.intertech.lab3 Browse...

[] Enclosing type: Browse...

Name: FileSelector «

Modifiers: (® public () default private protected

[abstract []final static

Superclass: java.lang.Object Browse...

Interfaces: ‘0 org.springframework.integration.core.MessageSelector Add...
Remove

Which method stubs would you like to create?
O public static void main{String(] args)
[Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

I:‘ Generate comments

Cancel

Notice that the wizard creates an accept(Message<?>) method that must be implemented for

the interface.

2.2 Code the accept() method. Enter the following code for the method.

public boolean accept (Message<?> message) {
if (message.getPayload() instanceof File
&& ((File) message.getPayload()) .getName () .startsWith ("msg")) {
return false;

}

return true;

Note that the method checks for the type of payload in the message. If it is a File payload and

starts with the filename of “msg”, the message is rejected.

/ Note: if you get stuck or feel like not typing in all the code yourself, you will find a working
copy of the final FileSelector file at ExpressSpringlntegration\lab3\lab3-filters-solution.

Copyright © Intertech, Inc. 2014 Rev: 9 7

Filters - Lab 3

2.2.1 Add the java.io.File import to the list of imports in the class.

import java.io.File;
import org.springframework.integration.core.MessageSelector;
import org.springframework.messaging.Message;

2.2.2 Save the class and make sure there are not compile errors.

Step 3: Add the Filter to the SI Components

Add a new filter component to the Spring Integration XML configuration. The filter will use

the

3.1

MessageSelector implementation you just created.

Add the FileSelector bean.

3.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open

it by double clicking on the file.

3.1.2 Add a Spring bean of the FileSelector type, as shown below, into the configuration.

<bean id="selector" class="com.intertech.lab3.FileSelector" />

3.2

Add a SI filter component.

3.2.1 Inthe same si-components.xml file, add a SI filter that takes a message from the

inbound channel], filters it and puts accepted messages in the outbound channel.

<int:filter input-channel="inboundChannel"
output-channel="outboundChannel" ref="selector" />

Note that the filter reference the selector bean.

/; Note: if you get stuck or feel like not typing in all the code yourself, you will find a working
copy of the final si-component.xml file at ExpressSpringlntegration\lab3\lab3-filters-

solution\si-component.xml.

3.2.2 Save the configuration file and make sure there are no errors in the file.

Copyright © Intertech, Inc. 2014

Rev: 9

Filters - Lab 3

Step 4: Test the Filter

Add messages into the inbound file folder and then test the application to see the filter do
its job.

4.1 Add the files to the inbound message folder.

4.1.1 Inthe si-components.xml, find the producer-file-adapter. Note the location of the
directory. Itis set, by default, to file:c://inbound. This is the location where messages will
be taken into the application by the adapter. Create this message folder - changing the
location to suit your needs and your file system (change the producer-file-adapter to reflect

your location).

4.1.2 Add files into the inbound message folder. Make sure some (at least one) file has a
name that begins with “msg”. Make sure some (at least one) file has a name that does not

begin with “msg”.

N L= inbound
Hame Share View

“ - T » This PC » Local Disk (C) » inbound
Fusion libs ~
hsgldb
message.txt
inbound
msg1.bet
inboundXML

Intel

murach

outbound v

4.1.3 Inthe si-components.xml, also locate the outbound-channel-adapter. Note the

location of the directory. Itis set, by default, to file:c://outbound. This is the location where
accepted messages will be deposited. Create the outbound folder in your file system. You
can use a different folder name if you are also willing to change the adapter’s directory

name.

4.2 Test the application. Test the application to see the Files in the inbound file folder
are filtered based on file name.

4.2.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu. Nothing should display in the Console view.

Copyright © Intertech, Inc. 2014 Rev: 9 9

Filters - Lab 3

4.3

4.2.2

directory (in step 4.1.3 above). See that the accepted messages are now in the folder.

Using a Windows Explorer, open the folder specified as the File output adapter’s

Rejected messages (files with names that begin with “msg”) have been filtered and not in the
folder.

outbound

AL

Share WiEw

¥ This PC » Local Disk (C:) * outbound *

inbound & Mame ’ Date modified Tvpe
inboundXML

Intel

(_ - T

message2.txt

murach
outbound
PerfLogs

Program Files v £

Stop the application. Recall the application is running in an infinite loop to allow

for the constant publishing and consuming of messages. Stop the application now.
4.3.1 Inthe Console view, click on the red square to terminate the Startup application.

4.3.2

the Console view by clicking on the Clear Console icon.

The Console view should now indicate that the application is “<terminated>". Clear

4.3.3 Below is the EIP model for your completed application.

T 1= V] =

producer-file-adapter

10

inboundChannel

File filter

outboundChannel consumer-file-adapter

Copyright © Intertech, Inc. 2014

Rev: 9

i —]

Filters - Lab 3

]
@ Scenario - Filter XML Messages with XPath

XML is popular in many messaging systems to include Spring Integration. XML describes
the data while also providing the data. When dealing with many messages, it can be
inconvenient to convert the XML messages to objects or even strings and parse the data for
relevant messages. Spring Integration already comes with a built-in XPath filter that allows
you to define a filter with an XPath expression to select only messages of interest.

Step 5:

Import the Maven Project

XML is popular in many messaging systems to include Spring Integration. XML describes
the data while also providing the data. When dealing with many messages, it can be
inconvenient to convert the XML messages to objects or even strings and parse the data for
relevant messages. Spring Integration already comes with a built-in XPath filter that allows
you to define a filter with an XPath expression to select only messages of interest.

A Maven Project containing the base code for an XPath filtering application has already
been created for you. You will use this project to begin your exploration of filters.

5.1

5.1.1

Copyright © Intertech, Inc. 2014

Import the new Maven Project.

Select File>Import... from the Eclipse menu bar.

7
At

e

&3 Import.. P

5 Export...

File | Edit Source Refactor Mavigate Search Project Crapd] Agit
New Alt+Shift+N » | o
Open File...

]
Close Ctrl+W
Close A Ctrl+Shift+W
Save Ctrl+5
Save As...
Save A Ctrl+Shift+S
Revert
Move...
Rename... F2
Refresh F5
Convert Line Delimiters To 4
Print... Ctrl+P
Switch Workspace 4

Restart

Rev: 9

11

Filters - Lab 3

5.1.2 Locate and open the General folder in the Import window, and then select Existing

Projects into Workspace Project from the options. Now push the Next> button.

Select

Create new projects from an archive file or directory.

Select an import source:

‘ type filter text

4 (= General
[T Archive File

|@ Existing Projects into Worlspace| h

(5, File System
E. Preferences
v = CVS
1 = EIB

5.1.3 In the “Import” window, use the Browse... button to locate the lab3-xml-filters-
starter project folder located in ExpressSpringIntegration\lab3 (this folder is located in the
lab downloads). Make sure the project is selected, and the “Copy projects into workspace”
checkbox is also checked before you hit the Finish button (as shown below).

/]

[] search for nested projects

Copy praojects into workspace h
Working sets

["] Add project to working sets

Working sets: Select...

Import Projects E
Select a directory to search for existing Eclipse projects. |
(®) Select root directory: | C:\Users\jwhite\Dropbox\Intertech\Books\Express Spring Integration\labs\ExpressSpringlntegration\lab3\lab3-xml-filters-starter v ‘ | Browse... |
() Select archive file: Browse...
Projects:
lab3-xmi-filters-starter (C:\Users\jwhite\Dropbox\Intertech\Books\Express Spring Integration\labs\ExpressSpringIntegration\lab3\lab3-xml-filters-starter) Select All
Options

|

@ Next > ‘ Finish | | Cancel

12 Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

5.2 Explore the project. Examine the project for the Spring Integration components
that are already present.
5.2.1 Examine the Startup.java. Expand the src/main/java folder in the Project Explorer
view, and open the Startup.java file by double clicking on it. As in past labs, the Startup.java
class is used to put the application in an infinite loop so that the SI components can do their
work.
S ———
- 5 lab3-filters-starter
4 52 lab3-xmi-filters-starter
4 (& grc/main/java
4 H com.intertech.lab3
- [Startupjava *
X log4j.xml
- [sre/main/resources
src/ftest/java
[sre/ftest/resources
5.2.2 Examine the SI configuration. Expand the src/main/resources/META-INF/spring
folder in the Project Explorer view, and open si-components.xml file by double clicking on it.
The si-components.xml file contains the Spring configuration that includes the definitions
for several SI components already.
MW”A
\F‘—\E lab3-xml-filters-starter
4 2 sr¢/mainfjava
- # com.intertech.lab3
¥ log4j.xmil
4 [sre/main/resources
4 (= META-INF
4 (= spring
¥ si-components.xml ?
[s] shiporder.xsd
[srcftest/java
[src/test/resources
» B JRE System Library [J25E-1.5]
i Mav /
5.2.3 In particular, note that again, a file inbound and outbound adapter are already
defined in the configuration file. In addition, three channels are defined - as represented in
the EIP diagram below.
]D‘ d g~ —] Pl ﬂ[
producer-file-adapter inboundChannel xml-inboundChannel outboundChannel consumer-file-adapter

Note that no connection exists between the inbound and outbound channels exist at this

time.

Copyright © Intertech, Inc. 2014 Rev: 9

13

Filters - Lab 3

Step 6: Add an XPath filter

6.1 Add the file to string transformer.

You will learn more about transforms in an upcoming tutorial. There are many types of
transformer message endpoints. Spring provides one called a file-to-string transformer.
This transformer turns a file message (that is a SI message with a file as its payload) into a
string message (a SI message with a string as its payload). The string that fills the resulting
message is from the contents of the file.

ile’
| > string
content
File String
Spring Integration Message Spring Integration Message

Why is this important? In order for an XPath filter to accept or reject the XML in a message,
it must first be able to access the XML contents rather than the file that holds the XML.

6.1.1 Locate the si-components.xml file in src/main/resource /META-INF/spring and open

it by double clicking on the file.

6.1.2 Add the file to string transformer to the configuration. Attach the transformer to the

inboundChannel message channel and the outbound xml-inboundChannel.

<int-file:file-to-string-transformer
id="file-2-string-transformer" input-channel="inboundChannel"
output-channel="xml-inboundChannel" charset="UTF-8" />

/ Note: if you get stuck or feel like not typing in all the code yourself, you will find a working
copy of the final si-component.xml file at ExpressSpringlntegration\lab3\lab3-xml-filters-

solution\si-component.xml.

6.2 Add a SI XPath filter component. While you could build a custom filter using a
MessageSelector implementation (like you did in the first part of this lab), SI
already comes with a built-in XPath filter. That way, you can filter XML messages
without having to write code to parse the message and digest its contents with
your own complex String manipulation code.

14 Copyright © Intertech, Inc. 2014 Rev: 9

Filters - Lab 3

6.2.1 Note that the configuration file already contains the Spring Integration XML

namespace at the top of the file.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:int-file=
"http://www.springframework.org/schema/integration/file"
xmlns:int-mail=
"http://www.springframework.org/schema/integration/mail"
xmlns:int-xml=
"http://www.springframework.org/schema/integration/xml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:int-stream=
"http://www.springframework.org/schema/integration/stream"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-
integration.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-
integration-stream.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-
integration-file.xsd
http://www.springframework.org/schema/integration/xml
http://www.springframework.org/schema/integration/xml/spring-
integration-xml.xsd">

6.2.2 Add an SI XPath expression component that defines the content in the XML message
you are looking for. This is not the filter itself, but is the expression component that defines
the XPath expression that the filter will use to filter. In this case, the expression says you are

looking for a <country> element in the message that contains the content of “USA”.

<int-xml:xpath-expression id="filterXpathExp"
expression="//country="USA'"></int-xml:xpath-expression>

/ Note: if you are looking for more help on XPath, see http://www.w3schools.com/XPath/.

Copyright © Intertech, Inc. 2014 Rev: 9 15

Filters - Lab 3

6.3

Add an SI XPath filter component.

6.3.1 In the si-components.xml file, add a SI XPath filter that takes a message from the
XML inbound channel, uses the XPath expression component above to filter the XML

messages and puts accepted messages in the outbound channel.

<int-xml:xpath-filter id="xpathFilter"
input-channel="xml-inboundChannel" match-type="exact"
output-channel="outboundChannel"
xpath-expression-ref="filterXpathExp">
</int-xml:xpath-filter>

Note that the filter references the XPath expression component.

6.3.2 Save the configuration file and make sure there are no errors in the file.

Step 7: Test the XPath Filter

Add XML messages into the inbound file folder and then test the application to see the filter

do its job.

7.1 Add the files to the inbound message folder.

16

7.1.1 Inthe si-components.xml, find the producer-file-adapter. Note the location of the
directory. Itis set, by default, to file:c://inboundXML. This is the location where messages
will be taken into the application by the adapter. Create this message folder - changing the
location to suit your needs and your file system (change the producer-file-adapter to reflect

your location).

7.1.2 Some sample XML messages have been provided to you. Find them in the
ExpressSpringlntegration\lab3 folder.

labs » ExpressSpringlntegration » lab3 » N

=

Name Date modified
. 7/24/2014 9:07 P

[2014 1112 F
014 1056 F

o example-xml-messages

o lab3-filters-solution
o lab3-filters-starter

o lab3-xmi-filters-solution

o lab3-xmil-filters-starter 7/24/2014 8:09 Ph

If you open the 3 messages, you will note that each are demo shipment orders. Each contain
a <country> element. One of the messages has a country element that has USA as the
country (satisfying the XPath expression). Copy the messages from the example-xml-

messages to the inboundXML folder.

/ Note that the outbound location is the same as in the last part of this lab.

Copyright © Intertech, Inc. 2014

Rev: 9

Filters - Lab 3

7.2 Test the application. Test the application to see the files in the inboundXML file
folder are filtered based on <country> element content.

7.2.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu. Nothing should display in the Console view.

7.2.2 Using a Windows Explorer, open the folder specified as the File output adapter’s
directory. See that the accepted messages are now in the folder. Rejected messages (files
with names that do not contain a <<country> with content of USA) have been filtered and not
in the folder.

C) » outbound

” Name Date modil

:| | shiporderl.xml 7/2472014

“

7.3 Stop the application. Recall the application is running in an infinite loop to allow
for the constant publishing and consuming of messages. Stop the application now.

7.3.1 Inthe Console view, click on the red square to terminate the Startup application.

7.3.2 The Console view should now indicate that the application is “<terminated>". Clear

the Console view by clicking on the Clear Console icon.

7.3.3 Below is the EIP diagram for your completed application.

Tra-=-CHH={ T =]

producer-file- inboundChannel file-2-string- xml- Xpath filter outboundChannel consumer-file-

A

Y
\J

adapter transformer inboundChannel adapter

Step 8: Create a validation filter

SI also comes with a ready-made validating filter. When dealing with XML messages that
are supposed to conform to an XML schema, it is often helpful to weed out XML messages
that do not conform to the schema. Using SI's built-in validating filter, all you have to do is
specify the location of the appropriate schema (.xsd) file and XML messages are filtered out
of a channel when they do not align with the schema definition.

Copyright © Intertech, Inc. 2014 Rev: 9 17

Filters - Lab 3

8.1 Locate the schema file in the project. A schema file for validating the shiporder
XML messages has already been created for you and added to the project.

8.1.1 Locate the shiporder.xsd file in the src/main/resources/META-INF folder in the lab3

project.

J%mewm\

4 52 lab3-xml-filters-starter
> [src/main/java

a4 [sre/main/resources
4 = META-INF

» = spring /
[src/test/java
src/ftest/resources
» = JRE System Library [J25E-1.5]
» =k Maven Dependencies
» B src

= target
W

8.1.2 Open the schema by double clicking on the file to explore its contents. This schema

file defines the legal XML elements and attributes for a shiporder message.

/ Note: If you would like to learn more about XML schemas and their use, see

http://www.w3schools.com/schema/default.asp.

8.2 Add avalidating filter. By this point in the tutorials, you have started to work
enough with SI applications and SI components to start to get a feel for how they
are configured and how the framework works. So it is time to put some of those
skills to the test. Replace the XPath filter with a validating filter to accept only
those XML shiporder messages that comply with the schema you saw in step 8.1.
The basic template is shown below. You need to supply the in and out message
channels along with the location of the schema file it is to use to do the filtering.

<int-xml:validating-filter id="validation-filter"
input-channel=" " output-channel=" "
schema-location=" ">

</int-xml:validating-filter>

/ Note: If you get stuck, consult the solutions for this lab.

8.3 Test the application. Make sure the outbound file folder is clear of messages
before testing the application. Then start the application and insure that only the

18 Copyright © Intertech, Inc. 2014

Rev: 9

Filters - Lab 3

valid messages are moved to the outbound folder. You should find two of the
messages (out of the 3 original messages) are valid.

k (C) » outbound

™
Name

¢) shiporder1.xml

+) shiporder2.xml

Filters are another type of Spring Integration message endpoint. They help to constrain the
messages that enter other SI components or another applications. SI comes with many
built-in filters, but you have also seen in this lab how to create your own custom filter with

a MessageSelector implementation.

Copyright © Intertech, Inc. 2014 Rev: 9

19

Filters -

Lab 3

Lab Solution

20

si-components.xml - for the File filter lab

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:int-
file="http://www.springframework.org/schema/integration/file"
xmlns:int-
mail="http://www.springframework.org/schema/integration/mail"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:int-
stream="http://www.springframework.org/schema/integration/stream"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-
integration.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-
integration-stream.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-
integration-file.xsd">

<!-- Adapter for reading files -->
<int-file:inbound-channel-adapter id="producer-file-adapter"
channel="inboundChannel" directory="file:c://inbound"
prevent-duplicates="true">
<int:poller fixed-rate="5000" />
</int-file:inbound-channel-adapter>

<int:channel id="inboundChannel" />

<int:filter input-channel="inboundChannel" output-
channel="outboundChannel"
ref="selector" />
<bean id="selector" class="com.intertech.lab3.FileSelector" />

<!-- a direct channel -->
<int:channel id="outboundChannel" />

<!-- Adapter for writing files -->
<int-file:outbound-channel-adapter
channel="outboundChannel" id="consumer-file-adapter"
directory="file:c://outbound" />

<int:poller id="defaultPoller" default="true"
max-messages-per-poll="5" fixed-rate="200" />

</beans>

Copyright © Intertech, Inc. 2014

Rev: 9

Filters - Lab 3

FileSelector.java

package com.intertech.lab3;

import java.io.File;
import org.springframework.integration.core.MessageSelector;
import org.springframework.messaging.Message;

public class FileSelector implements MessageSelector

public boolean accept (Message<?> message) {
if (message.getPayload() instanceof File
&& ((File) message.getPayload()) .getName () .startswWith ("msg"))

return false;

}

return true;

si-components.xml - for the XML filters lab

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:int="http://www.springframework.org/schema/integration"
xmlns:int-
file="http://www.springframework.org/schema/integration/file"
xmlns:int-
mail="http://www.springframework.org/schema/integration/mail"
xmlns:int-
xml="http://www.springframework.org/schema/integration/xml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:int-
stream="http://www.springframework.org/schema/integration/stream"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-
integration.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-
integration-stream.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-
integration-file.xsd
http://www.springframework.org/schema/integration/xml
http://www.springframework.org/schema/integration/xml/spring-
integration-xml.xsd">

<int-file:inbound-channel-adapter id="producer-file-adapter"
channel="inboundChannel" directory="file:c://inboundXML"
prevent-duplicates="true">
<int:poller fixed-rate="5000" />
</int-file:inbound-channel-adapter>

Copyright © Intertech, Inc. 2014 Rev: 9 21

Filters - Lab 3

<int:channel id="inboundChannel" />
<int-file:file-to-string-transformer
id="file-2-string-transformer" input-channel="inboundChannel"

output-channel="xml-inboundChannel" charset="UTF-8" />

<int:channel id="xml-inboundChannel" />

<!-- <int-xml:xpath-filter id="xpathFilter" -->

<!-- dinput-channel="xml-inboundChannel" match-type="exact" output-
channel="outboundChannel" -->

<!-- xpath-expression-ref="filterXpathExp"> -->

<!-- </int-xml:xpath-filter> -->

<!-- <int-xml:xpath-expression id="filterXpathExp" -->

<!-- expression="//country='USA'"></int-xml:xpath-expression> —->

<int-xml:validating-filter id="validation-filter"
input-channel="xml-inboundChannel" output-
channel="outboundChannel"
schema-location="META-INF/shiporder.xsd">
</int-xml:validating-filter>

<int:channel id="outboundChannel" />
<int-file:outbound-channel-adapter
channel="outboundChannel" id="consumer-file-adapter"

directory="file:c://outbound" />

<int:poller id="defaultPoller" default="true"
max-messages-per-poll="5" fixed-rate="200" />

</beans>

22

Copyright © Intertech, Inc. 2014

Rev: 9

