
  Copyright © Intertech, Inc. 2014      Rev: 14 1 
 

Lab Exercise  

Transformers - Lab 4  

 

No, Spring does not have Autobots, but the concept – turn something from one thing to 

another thing - is provided for in Spring Integration.  Spring Integration (SI) transformers 

turn one type of message into another.  In the world of integration, data providers and data 

consumers don’t always speak the same language.  So transformers provide SI applications 

the means to convert messages between formats to facilitate non-homogeneous message 

exchange.  For example, a producer may provide information in XML format.  It is the data 

your application needs, but it would like that data in JSON form.  A SI transformer can 

perform that message conversion. 

In this lab, you explore several types of SI transformers – some provided by SI out of the 

box.  As you have learned with other SI components, you can also create your own custom 

transformer. 

Specifically, in this lab you will: 

 Configure and use a message payload transformer. 

 Define a custom transformer. 

 Explore the use of annotations to reduce SI component XML configuration. 

 Examine the use of an XML to object transformer – otherwise known as an 

unmarshalling transformer. 

 Lab solution folder: ExpressSpringIntegration\lab4\lab4-transformer-solution & 

lab4-xml-transformer-solution 

 



Transformers - Lab 4 
 

 

2 Copyright © Intertech, Inc. 2014      Rev: 14 

 

Scenario – Transform String Messages 

In the first part of this lab, you some simple string message to string message transformers.  

That is, these transformers take a message with string payload from a channel (called the 

source message in SI), change the string payload of a message, and put a message with the 

altered string into another channel (called the target message in SI).  These simple 

examples will help you understand the basic configuration of a transformer and allow you 

to see how to create your own custom transformer. 

Step 1: Import the Maven Project 

A Maven Project containing the base code for a string transformer application has already 

been created for you.  You will use this project to begin your exploration of transformers. 

1.1 Start the Eclipse-based IDE.  Locate and start Eclipse (or Eclipse-based) IDE. 

1.1.1 Locate the Eclipse folder. 

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image 

below). 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 3 

 

1.1.3 Open your workspace.  Type in C:\Users\<your username >\workspace and click the 

OK button. 

 

 Note:  As noted in the past labs, you may use an alternate location for your workspace, but the 

labs will always reference this location (c:\users\[your username]\workspace) as the default 

workspace location. 

1.2 Import the new Maven Project.   

1.2.1 Select File>Import… from the Eclipse menu bar. 

 
  



Transformers - Lab 4 
 

 

4 Copyright © Intertech, Inc. 2014      Rev: 14 

 

1.2.2 Locate and open the General folder in the Import window, and then select Existing 

Projects into Workspace Project from the options.  Now push the Next> button.  

 

1.2.3 In the “Import” window, use the Browse… button to locate the lab4-transformer-

starter project folder located in ExpressSpringIntegration\lab4 (this folder is located in the 

lab downloads).  Make sure the project is selected, and the “Copy projects into workspace” 

checkbox is also checked before you hit the Finish button (as shown below). 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 5 

 

1.3 Explore the project.  Examine the project for the Spring Integration components 

that are already present. 

1.3.1 Examine the Startup.java.  Expand the src/main/java folder in the Project Explorer 

view, and open the Startup.java file by double clicking on it.  As in past labs, the Startup.java 

class is used to put the application in an infinite loop so that the SI components can do their 

work. 

 

1.3.2 Examine the SI configuration.  Expand the src/main/resources/META-INF/spring 

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.  

The si-components.xml file contains the Spring configuration that includes the definitions 

for several SI components already. 

 
  



Transformers - Lab 4 
 

 

6 Copyright © Intertech, Inc. 2014      Rev: 14 

 

1.3.3 In particular, note that many of existing components are just like what you saw in 

Lab 1.  There are Standard Input stream and Standard Output stream adapters for reading 

/writing String text to/from the standard input/output channels.  Recall that a Standard 

Input adapter takes text you enter into the Console view and puts it into a message on a 

designated message channel – in this case the inboundChannel.  The Standard Output 

adapter takes a message from a channel – in this case the outboundChannel - and displays its 

contents to the Console view.  Below is an EIP model representing what is currently defined 

in the si-components.xml file. 

 

 

Note that no connection exists between the inbound and outbound channels at this time. 

 Note:  You may have also noted the existence of a “component-scan” element and the context 

namespace in the XML file.  These will be discussed later in this lab. 

Step 2: Create a simple transformer 

Spring provides a built-in transformer that uses Spring Expression Language (SpEL) to 

achieving a simple transformation of the payload without writing a custom transformer.  In 

this example, you configure a simple transformer with a SpEL expression to transform the 

string contents of the source message into a target message containing the reversed, 

uppercase string of the source message. 

2.1 Add a SI transformer component. 

2.1.1 In the same si-components.xml file, add a SI transformer that uses SpEL to reverse 

and uppercase the string payload of a message from inboundChannel and put it into the 

outboundChannel. 

<int:transformer input-channel="inboundChannel" 

  output-channel="outboundChannel" 

  expression="new 

StringBuilder(payload).reverse().toString().toUpperCase()" /> 

 Note:  if you get stuck or feel like not typing in all the code yourself, you will find a working 

copy of the final si-component.xml file at ExpressSpringIntegration\lab4\lab4-transformer-

solution. 

  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 7 

 

With the addition of this transformer component, you have linked the inbound and 

outbound channels. 

 

Wolfe and Hohpe call this type of component a “message translator” – but it accomplishes 

the same goal. 

2.1.2 Save the configuration file and make sure there are no errors in the file. 

Step 3: Test the Transformer 

3.1 Test the application.  As you did in lab 1, use the Console view to enter data to the 

Standard Input stream and allow the transformer to uppercase and reverse your 

text entry and dump it back out to the Console view (via the Standard Output 

stream). 

3.1.1 Locate the Startup.java file in the source folder.  Right click on file and select Run As 

> Java Application from the resulting menu. 

3.1.2 The application is now running awaiting your text input.  In the Console view, enter 

some text and then hit the Enter key (by default, your text will be displayed in green).  

 

3.1.3 A text message created from the text you enter into the Standard Input where it will 

immediately be entered into the inboundChannel.  Immediately after that, it will be 

delivered to the transformer which will perform the reverse and uppercase operations on 

the string (per the SpEL expression).  The results will be put in a message on the 

outboundChannel.  The consumer adapter will then display the new message contents back 

to the Console view (in black).   

 

3.2 Stop the application.  Recall the application is running in an infinite loop to allow 

for the constant publishing and consuming of messages.  Stop the application now. 



Transformers - Lab 4 
 

 

8 Copyright © Intertech, Inc. 2014      Rev: 14 

 

3.2.1 In the Console view, click on the red square to terminate the Startup application. 

 

3.2.2 The Console view should now indicate that the application is “<terminated>”.  Clear 

the Console view by clicking on the Clear Console icon. 

 

Step 4: Custom Transformer and Spring Annotations 

As with filters and many other SI components, you can create your own custom 

transformer.  When the transformation is particularly complex or when you need to 

transform to / from a type that Spring does not know about, you will find custom 

transformation the route to take.  In this next step, you create a custom transformer – one 

that transforms the string payload of the source message to a pig Latin translation of the 

string in the target message.  In this step, you also see the use of annotations to configure 

your transformer.  SI (and all of Spring) allows the use of annotations in your Java code to 

simplify the configuration of components and reduce the amount of XML associated to your 

application.  While annotations were not used in the prior labs (like the filter lab), you will 

find that SI comes with a number of annotations that can be used in place of XML for the 

configuration of just about any SI component. 

 Note:  if you are unfamiliar with Pig Latin, you can learn about it here:  

http://en.wikipedia.org/wiki/Pig_Latin. 

4.1 Examine and annotate the Transformer class.  A class containing the Pig Latin 

conversion code has already been created for you.  You just need to annotate it in 

order to designate it as a transformer for SI. 

  

http://en.wikipedia.org/wiki/Pig_Latin


Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 9 

 

4.1.1 Locate, open, and explore the PigLatinTransformer class in the com.intertech.lab4 

package by double clicking on the file in the Package Explorer. 

 

4.1.2 Note that this class has a single method – the toPigLatin( ) method.  This message 

takes in a Message<String> object –the source message - and returns a Message<String> 

object – the target object.  The method grabs the string payload from the message (line 16) 

and loops through all the words in the String, converting each to a Pig Latin word as it goes 

(lines 20-45).  In the end, it builds and returns a new Message with the translated String as 

its contents (line 47). 

4.2 Annotate the PigLatinTransformer as a Spring component (bean) and as a SI 

transformer.  Annotations provide metadata about the components use and wiring 

right in the Java code as opposed to the XML configuration. 

4.2.1 On top of the class definition, define the PigLatinTransformer as a Spring component 

or bean.   

@Component 

public class PigLatinTransformer { 

  ... 

} 

Any class carrying this annotation on it will be automatically declared a Spring bean in the 

Spring container just as if you defined the bean with the following declaration. 

<bean id="pigLatinTransformer"  

  class="com.intertech.lab4.PigLatinTransformer"/> 

The <context:component-scan> element in the si-components.xml file is what tells Spring to 

go find the beans with these annotations (called Stereotype annotations) and make them 

beans in the Spring container.  In this case, telling it to look or scan the com.intertech.lab4 

package for such beans. 

<context:component-scan base-package="com.intertech.lab4" /> 



Transformers - Lab 4 
 

 

10 Copyright © Intertech, Inc. 2014      Rev: 14 

 

4.2.2 Annotate the toPigLatin( ) method with the @Transformer annotation provided by 

SI. 

 @Transformer 

 public Message<String> toPigLatin(Message<String> inString) { 

    ... 

  } 

This SI annotation defines the bean as an SI transformer, and more specifically, defines the 

toPigLatin method as the method that performs the transformational work.  SI will call this 

method when a message arrives in the inbound message channel.  SI takes the resulting 

return message in the outbound channel. 

4.2.3 Add the necessary imports required to use the annotations in the 

PigLatinTransformer class by hitting Control-Shift-O (all the imports needed in the class – 

including the new imports - are shown below). 

import java.util.Scanner; 

import org.springframework.integration.annotation.Transformer; 

import org.springframework.messaging.Message; 

import org.springframework.messaging.support.MessageBuilder; 

import org.springframework.stereotype.Component; 

4.3 Save the class and make sure there are no compile errors in the project. 

4.4 Replace the string reverse-uppercase transformer with the Pig Latin transformer. 

4.4.1 If not already open, locate the si-components.xml file in src/main/resource/META-

INF/spring and open it by double clicking on the file. 

4.4.2 Remove the string reverse/uppercase transformer.  You can either remove it from 

the file or comment it out using XML comments as shown below. 

<!-- <int:transformer input-channel="inboundChannel" --> 

<!-- output-channel="outboundChannel" --> 

<!-- expression="new 

StringBuilder(payload).reverse().toString().toUpperCase()" /> --> 

  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 11 

 

4.4.3 Add the Pig Latin Transformer.  Note that no bean definition is required for the “ref” 

attribute.  This is because the bean has been declared via annotations (and handled via the 

component scan). 

<int:transformer input-channel="inboundChannel" 

  output-channel="outboundChannel" ref="pigLatinTransformer" /> 

Again, note that the transformer connects the inboundChannel to the outboundChannel. 

 Note:  if you get stuck or feel like not typing in all the code yourself, you will find a working 

copy of the final si-component.xml file at ExpressSpringIntegration\lab4\lab4-transformer-

solution\si-component.xml. 

4.4.4 Save the configuration file and make sure there are no errors in the file. 

4.5 Retest the application (and see the Pig Latin transformation). 

4.5.1 Again locate the Startup.java file in the source folder.  Right click on file and select 

Run As > Java Application from the resulting menu. 

4.5.2 Again, enter a text phrase into the Console view and hit enter. 

 

4.5.3 This time, the custom transformer performs the work of message conversion 

resulting in the rather unique looking string that displays. 

 

4.5.4 Terminate the application and clear Console view. 

  



Transformers - Lab 4 
 

 

12 Copyright © Intertech, Inc. 2014      Rev: 14 

 

 Scenario – Transform XML Messages to Java Objects 

XML is popular way to deliver data.  However, Java applications prefer to work with the 

data in object form.  A built-in SI transformer provides the ability to convert an XML 

payload message into a message containing a Java object holding the data of the XML 

message.  This process is called unmarshalling transformation (an opposite process – going 

from Java object to XML payload also exists and that is called marshalling).  Under the 

covers, the unmarshalling transformer uses JAXB technology to perform the XML to object 

work.  In this portion of the lab, you explore the use of a SI unmarshalling transformer. 

Step 5: Import the Maven Project 

A Maven Project containing the base code for the XML unmarshalling transformer 

application has already been created for you.  You will use this project to begin your 

exploration of XML unmarshalling transformers. 

5.1 Import the new Maven Project.   

5.1.1 Select File>Import… from the Eclipse menu bar. 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 13 

 

5.1.2 Locate and open the General folder in the Import window, and then select Existing 

Projects into Workspace Project from the options.  Now push the Next> button.  

 

5.1.3 In the “Import” window, use the Browse… button to locate the lab4-xml-transformer-

starter project folder located in ExpressSpringIntegration\lab4 (this folder is located in the 

lab downloads).  Make sure the project is selected, and the “Copy projects into workspace” 

checkbox is also checked before you hit the Finish button (as shown below). 

 
  



Transformers - Lab 4 
 

 

14 Copyright © Intertech, Inc. 2014      Rev: 14 

 

5.2 Explore the project.  Examine the project for the Spring Integration components 

that are already present. 

5.2.1 Examine the Startup.java.  Expand the src/main/java folder in the Project Explorer 

view, and open the Startup.java file by double clicking on it.  As in past labs, the Startup.java 

class is used to put the application in an infinite loop so that the SI components can do their 

work. 

 

5.2.2 Note the presence of another class, ExampleServiceActivator, in the 

com.intertech.lab4 package.  More information about this service activator is below. 

 

5.2.3 Examine the SI configuration.  Expand the src/main/resources/META-INF/spring 

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.  

The si-components.xml file contains the Spring configuration that includes the definitions 

for several SI components already. 

 

5.2.4 In particular, note that again, a file inbound adapter is already defined in the 

configuration file (just like in lab 3). 



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 15 

 

5.2.5 On the end of the outboundChannel sits a service activator (the printing-service-

activator).  You will learn more about service activators in one of the latter tutorials.  What 

this particular service activator does is to take messages off the associated channel (in this 

case the outboundChannel that it is hooked to) and print the contents of the message out to 

the Console view using System.out.println().  You can find the logic associated to the service 

activator in com.intertech.lab4.ExampleServiceActivator. 

public class ExampleServiceActivator { 

  

 public void printShiporder(Object order){ 

  System.out.println(order); 

 } 

} 

5.2.6 Ah…, remember the transformer in the lab 3.  Its back!  Notice the file-to-string-

transformer is in place just as it was in lab 3.  Now that you know what transformers do, you 

have a better appreciation of why this SI component is in place.  It is what converts the file 

message into a string message so that the application can deal with the contents of the file 

versus the file itself. 

<int-file:file-to-string-transformer 

  id="file-2-string-transformer" input-channel="inboundChannel" 

  output-channel="xml-inboundChannel" charset="UTF-8" /> 

5.2.7 In addition, three channels are defined – as represented in the EIP diagram below.   

 

Note that no connection exists between the xml-inbound and outbound channels at this time. 

5.2.8 Finally, note the presence of a shiporder.xsd XML schema file located in the 

src/main/resources/META-INF folder along with an empty com.intertech.domain package.  

These will be used to inform the mapping engine to provide the classes needed to receive 

the data in the XML messages.  More on this coming up in the next step. 

 



Transformers - Lab 4 
 

 

16 Copyright © Intertech, Inc. 2014      Rev: 14 

 

Step 6: Use JAXB to generate the unmarshalling object 

SI comes with an out of the box UnmarshallingTransformer to convert XML payloads into 

objects.  Under the covers, the mapping between XML to object is accomplished by your 

choice of well-known mapping implementations to include JAXB, Castor, and JiBX.  As 

Eclipse provides a built in JAXB tool to generate the needed Java classes from schema, you 

will use the JAXB mapping implementation for the unmarshalling transformation for this 

step in the lab. 

 Note:  SI also comes with an out of the box support for marshalling objects to XML as well 

through a MarshallingTransformer component that can also use the mapping technologies 

listed above. 

6.1 Generate Java Classes from a schema.  In this portion of the lab, your SI application 

will accept a number of shipment order messages in XML.  The XML messages will 

be transformed into Shiporder objects by the SI UnmarshallingTransformer.  You 

could create the target Java classes by hand, but that usually proves tedious and 

error prone.  Most XML to object mapping technology provides class generation 

tools to create the needed Java classes.  Eclipse comes with built in JAXB support to 

generate Java classes from an XML schema that defines the incoming messages.  

Use that tool now to generate the Java classes from the shiporder.xsd. 

6.1.1 Locate the shiporder.xsd file in src/main/resource/META-INF/ folder and open it by 

double clicking on the file. 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 17 

 

6.1.2 The file will probably open in the Design view.  Use the tabs at the bottom of the view 

to change to the Source view to see the source XML for the schema. 

 

6.1.3 Explore the schema.  Note the definition of the shiporder, orderperson, and item 

elements in particular.  This schema defines the incoming XML shipment orders that your SI 

application will handle.  Messages of this ilk will need to be transformed (“unmarshalled”) 

into Java objects by the SI transformer.  Before the transformer can do its work, your 

application needs classes that define the objects that the transformer to create.  Eclipse has a 

built in JAXB tool that can use this file to generate those classes. 

6.1.4 Right click on the shiporder.xsd file in the Project Explorer view and select Generate 

> JAXB Classes… from the resulting menu. 

 



Transformers - Lab 4 
 

 

18 Copyright © Intertech, Inc. 2014      Rev: 14 

 

6.1.5 In the New JAXB Classes from schema window that appears, select lab4-XML-

transformer-starter as the project for the new classes and press the Next> button. 

 

6.1.6 In the next window, use the Browse… button next to the Package field to select the 

com.intertech.domain package.  This specifies where the new Java classes will be placed in 

the project.  Leave the other fields blank as shown below and press the Finish button. 

 

6.1.7 Acknowledge the warning about overwriting existing files by pressing Yes on the 

next window. 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 19 

 

6.1.8 If you watch the Console view, Eclipse will inform you of the work it is perform.  

When complete, you should find new classes in the com.intertech.domain package.  

 

 

6.2 Add toString( ) methods to the JAXB generated classes.  In order to see the results 

of the SI transformer best, it is helpful to put toString( ) methods on all of the JAXB 

generated classes.  The toString( ) method can display the contents of the objects 

and will be used by the service activator to display the contents to the Console 

View. 

6.2.1 Locate and open the newly created Shiporder.java class found in the 

com.intertech.domain package in src/main/java folder by double clicking on the file in the 

Project Explorer. 

 
  



Transformers - Lab 4 
 

 

20 Copyright © Intertech, Inc. 2014      Rev: 14 

 

6.2.2 In this file, there are three classes defined:  Shiporder and two inner classes Item 

and Shipto (it might be difficult to find them given all the commenting that the JAXB 

generator added – feel free to delete the comments if it helps).  Allow Eclipse to generate 

toString( ) methods for each of these three classes.  Right click on each of the three classes in 

the editor and select Source > Generate toString()… from the resulting menu as shown 

below. 

 
  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 21 

 

6.2.3 In the resulting Generate toString( ) window, make sure all the fields for each class 

are selected and then press the OK button (shown below for the Shiporder class).  Don’t 

forget to do this for each of the three classes (Shiporder, Item, and Shipto). 

 

6.3 Save the Shiporder class and make sure there are no compile errors in the project. 

Step 7: Add the XML Unmarshalling Transformer 

With the target object types now generated, it is time to add the SI components to perform 

the XML to object transformation. 

7.1 Add the JAXB marshalling/unmarshalling bean.  Again, the SI transformer works 

with any number of XML to object mapping technologies.  You are going to use a 

JAXB mapping object (provided with Spring Integration) to do the mapping work 

under the covers for the transformer. 

7.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open 

it by double clicking on the file. 

  



Transformers - Lab 4 
 

 

22 Copyright © Intertech, Inc. 2014      Rev: 14 

 

7.1.2 Add a Spring bean of the Jaxb2Marshaller type, as shown below, into the 

configuration.  This bean can do both unmarshalling and marshalling work. 

<bean id="jaxbMarshaller"  

    class="org.springframework.oxm.jaxb.Jaxb2Marshaller"> 

  <property name="contextPath" value="com.intertech.domain" /> 

</bean> 

7.2 Add a SI transformer component. 

7.2.1 In the same si-components.xml file, add a SI unmarshalling-transformer that takes a 

message from the inbound channel, transforms it to an object (using the JAXB marshaller) 

and puts the new object message in the outbound channel. 

<int-xml:unmarshalling-transformer 

  id="xml-2-object-transformer" input-channel="xml-inboundChannel" 

  output-channel="outboundChannel" unmarshaller="jaxbMarshaller" /> 

Note that the transformer references the unmarshalling bean. 

 Note:  if you get stuck or feel like not typing in all the code yourself, you will find a working 

copy of the final si-component.xml file at ExpressSpringIntegration\lab4\lab4-XML-

transformer-solution folder. 

7.2.2 Save the configuration file and make sure there are no errors in the file. 

  



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 23 

 

 

Step 8: Test the Unmarshalling  Filter 

Add messages into the inbound file folder and then test the application to see the 

unmarshalling transformer do its job. 

8.1 Add the files to the inbound message folder. 

8.1.1 In the si-components.xml, find the producer-file-adapter.  Note the location of the 

directory.  It is set, by default, to file:c://inboundXML.   This is the location where XML 

shiporder messages will be taken into the application by the adapter.  If it does not already 

exist for the last lab, create this message folder - changing the location to suit your needs and 

your file system (change the producer-file-adapter to reflect your location). 

8.1.2 Some sample XML shiporder messages have been provided to you.  Find them in an 

inboundXML folder in ExpressSpringIntegration\lab4. 

 

If you open the 3 messages in the folder, you will note that each is a shipment order 

following the shiporder.xsd schema. Copy the messages from this folder to the 

c:\\inboundXML folder (or whatever folder you created per 8.1.1. above). 

 

8.2 Test the application.  Test the application to see the files in the inbound file folder 

are transformed to objects and then displayed via their toString( ) methods to the 

Console view by the ExampleServiceActivator. 



Transformers - Lab 4 
 

 

24 Copyright © Intertech, Inc. 2014      Rev: 14 

 

8.2.1 Locate the Startup.java file in the source folder.  Right click on file and select Run As 

> Java Application from the resulting menu. 

8.2.2 Give the application a few seconds to digest each message.  Going from XML to object 

takes a bit more work than reversing a string.  Each XML message should eventually show up 

in the Console view as the toString( ) representation of the object that was created by the 

transformer. 

 

8.3 Stop the application.  Recall the application is running in an infinite loop to allow 

for the constant publishing and consuming of messages.  Stop the application now. 

8.3.1 In the Console view, click on the red square to terminate the Startup application. 

8.3.2 The Console view should now indicate that the application is “<terminated>”.  Clear 

the Console view by clicking on the Clear Console icon. 

8.3.3 Below is the EIP model for your completed unmarshalling transformer application. 

 

 



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 25 

 

Lab Solution 

si-components.xml - for the string transformer labs 

<?xml version="1.0" encoding="UTF-8"?> 

<beans xmlns="http://www.springframework.org/schema/beans" 

  xmlns:int="http://www.springframework.org/schema/integration" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream" 

  xmlns:context="http://www.springframework.org/schema/context" 

  xsi:schemaLocation=" 

  http://www.springframework.org/schema/beans 

http://www.springframework.org/schema/beans/spring-beans.xsd 

  http://www.springframework.org/schema/integration 

http://www.springframework.org/schema/integration/spring-

integration.xsd 

  http://www.springframework.org/schema/integration/stream 

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd http://www.springframework.org/schema/context 

http://www.springframework.org/schema/context/spring-context.xsd"> 

 

  <!-- Scans within the base package of the application for 

@Components to  

    configure as beans --> 

  <context:component-scan base-package="com.intertech.lab4" /> 

 

  <!-- message producer / a Spring Integration wrapped Java Standard 

input  

    stream --> 

  <int-stream:stdin-channel-adapter id="producer-stream-adapter" 

    channel="inboundChannel" /> 

 

  <int:channel id="inboundChannel" /> 

 

  <!-- <int:transformer input-channel="inboundChannel" --> 

  <!-- output-channel="outboundChannel" --> 

  <!-- expression="new 

StringBuilder(payload).reverse().toString().toUpperCase()"  

    /> --> 

 

  <int:transformer input-channel="inboundChannel" 

    output-channel="outboundChannel" ref="pigLatinTransformer" /> 

 

  <int:channel id="outboundChannel" /> 

 

  <int-stream:stdout-channel-adapter 

    id="consumer-stream-adapter" channel="outboundChannel" append-

newline="true" /> 

 

  <int:poller id="defaultPoller" default="true" 

    max-messages-per-poll="5" fixed-rate="200" /> 

 

</beans> 

  



Transformers - Lab 4 
 

 

26 Copyright © Intertech, Inc. 2014      Rev: 14 

 

PigLatinTransformer.java 

package com.intertech.lab4; 

 

import java.util.Scanner; 

import org.springframework.integration.annotation.Transformer; 

import org.springframework.messaging.Message; 

import org.springframework.messaging.support.MessageBuilder; 

import org.springframework.stereotype.Component; 

 

@Component 

public class PigLatinTransformer { 

 

  @Transformer 

  public Message<String> toPigLatin(Message<String> inString) { 

    String word; 

    String latin = ""; 

    StringBuilder latinPhrase = new StringBuilder(); 

    char first; 

    boolean cap = false; 

    String line = inString.getPayload(); 

    Scanner pig = new Scanner(line); 

 

    // loop through all the words in the line 

    while (pig.hasNext()) // is there another word? 

    { 

      word = pig.next(); 

      first = word.charAt(0); 

      if ('A' <= first && first <= 'Z') // first is capital letter 

      { 

        first = Character.toLowerCase(first); 

        cap = true; 

      } else 

        cap = false; 

 

      // test if first letter is a vowel 

      if (first == 'a' || first == 'e' || first == 'i' || first == 'o' 

          || first == 'u') 

        latin = word + "hay"; 

      else // not a vowel 

      { 

        if (cap) { 

          latin = "" + Character.toUpperCase(word.charAt(1)); 

          latin = latin + word.substring(2) + first + "ay"; 

        } else 

          latin = word.substring(1) + first + "ay"; 

      } 

      latinPhrase.append(latin + " "); 

 

    } 

    pig.close(); 

    return MessageBuilder.withPayload(latinPhrase.toString()).build(); 

  } 

} 



Transformers - Lab 4 
 

  Copyright © Intertech, Inc. 2014         Rev: 14 27 

 

si-components.xml – for the XML unmarshalling transformer lab 

<?xml version="1.0" encoding="UTF-8"?> 

<beans xmlns="http://www.springframework.org/schema/beans" 

  xmlns:int="http://www.springframework.org/schema/integration" 

  xmlns:int-

file="http://www.springframework.org/schema/integration/file" 

  xmlns:int-

mail="http://www.springframework.org/schema/integration/mail" 

  xmlns:int-

xml="http://www.springframework.org/schema/integration/xml" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream" 

  xsi:schemaLocation=" 

  http://www.springframework.org/schema/beans 

http://www.springframework.org/schema/beans/spring-beans.xsd 

  http://www.springframework.org/schema/integration 

http://www.springframework.org/schema/integration/spring-

integration.xsd 

  http://www.springframework.org/schema/integration/stream 

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd 

  http://www.springframework.org/schema/integration/file 

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd 

  http://www.springframework.org/schema/integration/xml 

http://www.springframework.org/schema/integration/xml/spring-

integration-xml.xsd"> 

 

  <!-- Adapter for reading files --> 

 

  <int-file:inbound-channel-adapter id="producer-file-adapter" 

    channel="inboundChannel" directory="file:c://inboundXML" 

    prevent-duplicates="true"> 

    <int:poller fixed-rate="5000" /> 

  </int-file:inbound-channel-adapter> 

 

  <int:channel id="inboundChannel" /> 

 

  <int-file:file-to-string-transformer 

    id="file-2-string-transformer" input-channel="inboundChannel" 

    output-channel="xml-inboundChannel" charset="UTF-8" /> 

 

  <int:channel id="xml-inboundChannel" /> 

 

  <int-xml:unmarshalling-transformer 

    id="xml-2-object-transformer" input-channel="xml-inboundChannel" 

    output-channel="outboundChannel" unmarshaller="jaxbMarshaller" /> 

 

  <bean id="jaxbMarshaller" 

class="org.springframework.oxm.jaxb.Jaxb2Marshaller"> 

    <property name="contextPath" value="com.intertech.domain" /> 

  </bean> 

 

  <int:channel id="outboundChannel" /> 

 



Transformers - Lab 4 
 

 

28 Copyright © Intertech, Inc. 2014      Rev: 14 

 

  <int:service-activator id="printing-service-activator" 

    input-channel="outboundChannel" ref="serviceActivator" /> 

  <bean id="serviceActivator" 

class="com.intertech.lab4.ExampleServiceActivator" /> 

 

</beans> 

 


