
  Copyright © Intertech, Inc. 2014      Rev: 16 1 
 

Lab Exercise  

Service Activators - Lab 7  

Throughout this tutorial series, you have seen many service activators without really 

knowing what a service activator is or does – generically at least.  It is time to resolve those 

questions.  Service activators are Spring Integration message endpoints that trigger some 

service on the arrival of a message into a channel in which the service activator is attached.  

The service is just a Spring bean – typically nothing more than a plain old Java object – with 

at least one processing method.  The service typically performs some type of business 

processing based on the incoming message (and its contents), but it doesn’t have to.  The 

service activator bean can produce results.  Results are placed in an outbound (or reply) 

message channel. 

Service activators are quite simple to create and very versatile components.  Because they 

don’t really have any set form or specific type of processing like other SI components such 

as a transformer, filter, etc. they can be used in any number of situations.  In fact, as they 

see all messages coming through a channel, they could be used as alternates to components 

like enrichers or transformers.  However, they often serve as a Spring Integration conduit 

to business processing of message information, and as good building blocks and debugging 

facilities in the construction and maintenance of SI applications.  For example, you have 

already seen, in prior labs, the use of a service activator to print out the contents of 

messages in the last outbound channel to the Console view.  In this lab, you explore how to 

create and use a business processing service activator. 

Specifically, in this lab you will: 

 Revisit Spring XML to object message and object to XML transformation. 

 Revisit Spring file adapters to read and write XML messages to/from the file system. 

 Create a POJO to tally the total revenue from the shipment orders that come through the 

SI system. 

 Configure a service activator to use the POJO to display the running revenue total to the 

Console view. 

 Lab solution folder: ExpressSpringIntegration\lab7\lab7-serviceactivators-

solution 



Service Activators - Lab 7 
 

 

2 Copyright © Intertech, Inc. 2014      Rev: 16 

 

Scenario – Calculate the shipment order revenue 

Already created for you is a rather complex Spring Integration application that uses many 

of the SI components you have already seen and used.  The existing SI application reads 

XML files into file messages, transforms the file messages to XML string messages, and then 

transforms string XML messages to Shiporder messages.  Shiporder messages are then 

transformed back to XML string messages, where they are finally transformed to file 

messages and dumped to the file system.  Your task will be to plant a service activator into 

the middle of this application.  The service activator will look at the Shiporder messages 

and add up the total revenue generated by each order.  It will also roll-up all the order 

totals to provide a grand revenue amount generated by all orders to the Console view in 

Eclipse. 

Step 1: Import the Maven Project 

A Maven Project containing the base code for a message transforming and revenue 

calculating application has already been created for you.  You will use this project to begin 

your exploration of enrichers. 

1.1 Start the Eclipse-based IDE.  Locate and start Eclipse (or Eclipse-based) IDE. 

1.1.1 Locate the Eclipse folder. 

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image 

below). 

 
  



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 3 

 

1.1.3 Open your workspace.  Type in C:\Users\<your username >\workspace and click the 

OK button. 

 

 Note:  As noted in the past labs, you may use an alternate location for your workspace, but the 

labs will always reference this location (c:\users\[your username]\workspace) as the default 

workspace location. 

1.2 Import the new Maven Project.   

1.2.1 Select File>Import… from the Eclipse menu bar. 

 
  



Service Activators - Lab 7 
 

 

4 Copyright © Intertech, Inc. 2014      Rev: 16 

 

1.2.2 Locate and open the General folder in the Import window, and then select Existing 

Projects into Workspace Project from the options.  Now push the Next> button.  

 

1.2.3 In the “Import” window, use the Browse… button to locate the lab7-serviceactivator-

starter project folder located in ExpressSpringIntegration\lab7 (this folder is located in the 

lab downloads).  Make sure the project is selected, and the “Copy projects into workspace” 

checkbox is also checked before you hit the Finish button (as shown below). 

 
  



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 5 

 

1.3 Explore the project.  Examine the project for the Spring Integration components 

that are already present. 

1.3.1 Examine the Startup.java.  Expand the src/main/java folder in the Project Explorer 

view, and open the Startup.java file by double clicking on it.  As in past labs, the Startup.java 

class is used to put the application in an infinite loop so that the SI components can do their 

work. 

 

1.3.2 Locate and open the Shiporder.java class found in the com.intertech.domain package 

in src/main/java folder by double clicking on the file in the Project Explorer. 

 

As you learned earlier in this tutorial class, there are three classes defined in this file:  

Shiporder and two inner classes Item and Shipto.  XML messages will again be read and 

transformed into Shiporder objects with this lab.  In particular, the Shiporder objects will be 

examined by the service activator and the total cost of each of the ship orders will be added 

up to provide the total revenue generated by the shipments. 

  



Service Activators - Lab 7 
 

 

6 Copyright © Intertech, Inc. 2014      Rev: 16 

 

1.3.3 Examine the SI configuration.  Expand the src/main/resources/META-INF/spring 

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.  

The si-components.xml file contains the Spring configuration that includes the definitions 

for several SI components already. 

 

In particular, note that the application already contains an inbound and outbound file 

adapters.  It also contains a number of transformers.  There are transformers for getting 

files to strings, XML to objects (unmarshaller), objects to XML objects (marshaller), and XML 

to strings.  Of course, there are several channels to connect all the components.  Below is the 

EIP diagram of the application as it currently stands. 

 

 

This is a complete application.  You can test the application at this time if you so desire (go to 

Step 4 below to see how to prepare the XML messages and execute the application).  In 

running the application, you will find that the application takes XML shipment order 

messages from c:\\inboundXML and deposits them (unchanged) to c:\\outboundXML by 

default. 

 Note:  Be aware that at this time, if you run the application, nothing will show up in the 

Console view.  You must watch the c:\\outboundXML folder.  Once 3 messages have arrived in 

the outboundXML folder, you can stop the application. 

  



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 7 

 

Step 2: Create a Service Activator 

In this step, you create a POJO that calculates the total cost for each shipment order 

(Shiporder) received through the SI system – adding the total cost to a total revenue 

number it tracks for all messages received.  The POJO represents the business service.  You 

also create a service activator SI component that calls on the POJO each time a message is 

received in a designated message channel. 

2.1 Create the service activator’s POJO that provides the business service. 

2.1.1 Locate the com.intertech.lab7 package, right click on it and select New > Class from 

the resulting menu. 

 

2.1.2 In the New Java Class window, enter RevenueServiceActivator as the class name and 

then press the Finish button. 

 

Note that the class does not have to implement any interfaces or extend any classes – again, 

it is a simple POJO. 



Service Activators - Lab 7 
 

 

8 Copyright © Intertech, Inc. 2014      Rev: 16 

 

2.2 Code the RevenueServiceActivator class. 

2.2.1 Add a revenue holding instance variable to the new RevenueServiceActivator class.  

This instance variable will hold the total costs (revenue for the receiving company) of all 

shipment orders passing through the SI application. 

private double revenue = 0.0; 

2.2.2 Code the adjustRevenue( ) method.  A service activator service bean can have 

multiple service methods.  However, when it does, the configuration of the service activator 

must indicate the method to call when a message arrives.  When a service activator has just 

one public method – as in this case – Spring Integration knows which method to call and no 

additional configuration is needed.  Enter the following code for the service activator’s 

business processing method. 

public Message<Shiporder> adjustRevenue(Message<Shiporder> order) { 

  System.out.println("Processing order"); 

  for (Item item : order.getPayload().getItem()) { 

    revenue = revenue 

        + (item.getPrice().doubleValue() * item.getQuantity() 

            .intValue()); 

    System.out.println("Revenue now up to:  " + revenue); 

  } 

  System.out.println("Done processing order"); 

  return order; 

} 

Note that the method gets passed a SI message with a Shiporder payload.  It must also return 

a message containing the Shiporder payload.  The return message will be placed in an 

outbound channel.  The method iterates through all items associated to the Shiporder, and 

calculates the total cost of each order.  It then adds the order to the revenue total instance 

variable. 

 Note:  if you get stuck or feel like not typing in all the code yourself, you will find a working 

copy of the final RevenueServiceActivator class at ExpressSpringIntegration\lab7\lab7-

serviceactivator-solution. 

2.2.3 Add the required imports to the RevenueServiceActivator class.  You can hit Control-

Shift-O to have Eclipse automatically add the right imports.  You should find the following 

imports are required in the class. 

import org.springframework.messaging.Message; 

import com.intertech.domain.Shiporder; 

import com.intertech.domain.Shiporder.Item; 

2.2.4 Save the class and make sure there are not compile errors. 



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 9 

 

Step 3: Add and Configure the Service Activator Component 

With the business service defined, the service activator, Spring bean, and additional 

message channel need to be added to the Spring Integration configuration. 

3.1 Add a message channel for incoming messages.  The service activator will need to 

trigger on the arrival of messages in a channel.  The results returned by the service 

activator will then be published as a message to the outbound channel.   

3.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open 

it by double clicking on the file. 

3.1.2 Add a new message channel for incoming Shiporder messages that are to trigger the 

service activator. 

<int:channel id="revenueProcessingChannel" /> 

3.1.3 Alter the unmarshalling-transformer to put is outbound messages into the new 

revenueProcessingChannel versus the outboundChannel as shown below. 

<int-xml:unmarshalling-transformer 

  id="xml-2-object-transformer" input-channel="xml-inboundChannel"  

  output-channel="outboundChannel" 

  output-channel="revenueProcessingChannel" 

unmarshaller="jaxbMarshaller" /> 

3.2 Add the Service Activator. 

3.2.1 Add the RevenueServiceActivator as a Spring bean. 

<bean id="revenueServiceBean" 

class="com.intertech.lab7.RevenueServiceActivator" /> 

3.2.2 Add the service activator using (by reference) the service bean.  The service 

activator should trigger on messages entering the new revenueProcessingChannel and it 

should push the results (in message form) to the outboundChannel. 

<int:service-activator ref="revenueServiceBean" 

  input-channel="revenueProcessingChannel"  

  output-channel="outboundChannel" /> 

3.2.3 With the completion of the service activator and new channel, the SI application can 

be represented by the Wolfe and Hohpe EIP model below. 

 



Service Activators - Lab 7 
 

 

10 Copyright © Intertech, Inc. 2014      Rev: 16 

 

3.3 Save the configuration file and make sure there are no errors in the file. 

Step 4: Test the Service Activator 

4.1 Add the files to the inbound message folder. 

4.1.1 In the si-components.xml, find the producer-file-adapter.  Note the location of the 

directory.  It is set, by default, to file:c://inboundXML.   This is the location where the XML 

ship order messages will be taken into the application by the adapter.  It is the same folder 

used in past labs.  If it does not already exist, create this message folder - changing the 

location to suit your needs and your file system (change the producer-file-adapter to reflect 

your location). 

4.1.2 Again, some sample XML ship order messages have been provided to you.  Find them 

in an inboundXML folder in ExpressSpringIntegration\lab7. 

 

Copy the messages from this folder to the c:\\inboundXML folder (or whatever folder you 

created per 4.1.1. above). 

 

 Note:  the messages and locations did not change for the last lab.  You can use the same 

messages if they remain from the last lab (lab 6) without the need to copy anew. 

4.1.3 Note the outbound channel adapter called consumer-file-adapter in the si-

components.xml.  In particular, note the location of the directory.  It is set, by default, to 

file:c://outboundXML.  It will be automatically created if it does not exist so you do not have 

to create it (see the auto-create-directory attribute).  This is the location where the XML ship 

order messages will be deposited once they have worked their way through the SI 

application and service activator.  You can look in this directory for the three messages that 

originated in c:\\inboundXML folder. 



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 11 

 

4.2 Test the application.  Test the application to see the service activator tally up the 

order costs as revenue. 

4.2.1 Locate the Startup.java file in the source folder.  Right click on file and select Run As 

> Java Application from the resulting menu.   

4.2.2 This should cause messages to be ready from c:\\inboundXML and deposited to 

c:\\outboundXML.  Using a Windows Explorer, you can check for new messages in the 

c:\\outboundXML folder. 

 Note:  depending on the speed of your system, you may have to give the application a couple of 

seconds to complete its work.  

4.3 Check the Console view for results.  The RevenueServiceActivator’s 

adjustRevenue( ) method will be called for each message received in the 

revenueProcessingChannel.  For each Shiporder-payload message received, the 

service activator also writes several lines to the Console view.  Namely, it indicates 

when it has started and stopped processing a Shiporder message and it also 

indicates new revenue added to the revenue total based on the cost of each item it 

finds in the Shiporder message. 

 

Note that there are only three shipment order messages to be processed, so you 

should see three sets of “Processing order” and “Done processing order” messages 

in the Console view. 

4.4 Stop the application.  Recall the application is running in an infinite loop to allow 

for the constant publishing and consuming of messages.  Stop the application now. 

4.4.1 In the Console view, click on the red square to terminate the Startup application. 

4.4.2 The Console view should now indicate that the application is “<terminated>”.   



Service Activators - Lab 7 
 

 

12 Copyright © Intertech, Inc. 2014      Rev: 16 

 

Lab Solution 

si-components.xml 

<?xml version="1.0" encoding="UTF-8"?> 

<beans xmlns="http://www.springframework.org/schema/beans" 

  xmlns:int="http://www.springframework.org/schema/integration" 

  xmlns:int-

file="http://www.springframework.org/schema/integration/file" 

  xmlns:int-

mail="http://www.springframework.org/schema/integration/mail" 

  xmlns:int-

xml="http://www.springframework.org/schema/integration/xml" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream" 

  xsi:schemaLocation=" 

  http://www.springframework.org/schema/beans 

http://www.springframework.org/schema/beans/spring-beans.xsd 

  http://www.springframework.org/schema/integration 

http://www.springframework.org/schema/integration/spring-

integration.xsd 

  http://www.springframework.org/schema/integration/stream 

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd 

  http://www.springframework.org/schema/integration/file 

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd 

  http://www.springframework.org/schema/integration/xml 

http://www.springframework.org/schema/integration/xml/spring-

integration-xml.xsd"> 

 

  <!-- Adapter for reading files --> 

 

  <int-file:inbound-channel-adapter id="producer-file-adapter" 

    channel="inboundChannel" directory="file:c://inboundXML" 

    prevent-duplicates="true"> 

    <int:poller fixed-rate="5000" /> 

  </int-file:inbound-channel-adapter> 

 

  <int:channel id="inboundChannel" /> 

 

  <int-file:file-to-string-transformer 

    id="file-2-string-transformer" input-channel="inboundChannel" 

    output-channel="xml-inboundChannel" charset="UTF-8" /> 

 

  <int:channel id="xml-inboundChannel" /> 

 

  <int-xml:unmarshalling-transformer 

    id="xml-2-object-transformer" input-channel="xml-inboundChannel" 

    output-channel="revenueProcessingChannel" 

unmarshaller="jaxbMarshaller" /> 

 

  <bean id="jaxbMarshaller" 

class="org.springframework.oxm.jaxb.Jaxb2Marshaller"> 

    <property name="contextPath" value="com.intertech.domain" /> 



Service Activators - Lab 7 
 

  Copyright © Intertech, Inc. 2014         Rev: 16 13 

 

  </bean> 

 

  <int:channel id="revenueProcessingChannel" /> 

 

  <int:service-activator ref="revenueServiceBean" 

    input-channel="revenueProcessingChannel" output-

channel="outboundChannel" /> 

  <bean id="revenueServiceBean" 

class="com.intertech.lab7.RevenueServiceActivator" /> 

   

  <int:channel id="outboundChannel" /> 

 

  <int-xml:marshalling-transformer id="object-2-xml-transformer" 

    input-channel="outboundChannel" output-channel="xml-

outboundChannel" 

    marshaller="jaxbMarshaller" result-type="StringResult" /> 

 

  <int:channel id="xml-outboundChannel" /> 

 

  <int:object-to-string-transformer id="xml-to-string-transformer" 

    input-channel="xml-outboundChannel" output-channel="string-

outboundChannel" /> 

 

  <int:channel id="string-outboundChannel" /> 

 

  <int-file:outbound-channel-adapter 

    channel="string-outboundChannel" id="consumer-file-adapter" 

    directory="file:c://outboundXML" auto-create-directory="true" /> 

 

</beans> 

  



Service Activators - Lab 7 
 

 

14 Copyright © Intertech, Inc. 2014      Rev: 16 

 

RevenueServiceActivator.java 

package com.intertech.lab7; 

 

import org.springframework.messaging.Message; 

import com.intertech.domain.Shiporder; 

import com.intertech.domain.Shiporder.Item; 

 

public class RevenueServiceActivator { 

 

  private double revenue = 0.0; 

   

  public Message<Shiporder> adjustRevenue(Message<Shiporder> order) { 

    System.out.println("Processing order"); 

    for (Item item : order.getPayload().getItem()) { 

      revenue = revenue 

          + (item.getPrice().doubleValue() * item.getQuantity() 

              .intValue()); 

      System.out.println("Revenue now up to:  " + revenue); 

    } 

    System.out.println("Done processing order"); 

    return order; 

  } 

} 


