
 Copyright © Intertech, Inc. 2014 Rev: 21 1

Lab Exercise

Gateways - Lab 8

Gateways allow your non-Spring Integration components to access Spring Integration

systems without having to know (and import) the SI API. In other words, gateways allow

your other components to be loosely coupled to SI.

In this last lab of the tutorial series, you revisit the Pig Latin transformer. You create a

gateway to separate a calling component, in this case a simple class with a main method,

from the rest of the SI API or any messaging system.

Specifically, in this lab you will:

 Explore a simple transformation application.

 Create a gateway interface.

 Configure a gateway component.

 Modify a simple application to use the gateway and divorce itself from SI knowledge.

 Lab solution folder: ExpressSpringIntegration\lab8\lab8-gateways-solution

Gateways - Lab 8

2 Copyright © Intertech, Inc. 2014 Rev: 21

Scenario

Already created for you is a simple Spring Integration application that uses the transformer

logic you have already seen and used. The Startup class, as it has done for all the labs,

contains a main() method that kicks off the SI application. In this case, it is used to grab

the input MessageChannel and deposits a message into the MessageChannel.

Unfortunately, this requires that Startup has a lot of information of SI components and the

messaging system that underlies it all.

Here is a list of the imports in Startup at the start of this lab.

import

org.springframework.context.support.ClassPathXmlApplicationContext;

import org.springframework.messaging.Message;

import org.springframework.messaging.MessageChannel;

import org.springframework.messaging.support.MessageBuilder;

In this lab, you modify the application to decouple Startup from SI the API using a gateway.

Step 1: Import the Maven Project

A Maven Project containing the tightly coupled Startup to SI APIs for Pig Latin

transformation has already been created for you. You will use this project to begin your

exploration of gateways.

1.1 Start the Eclipse-based IDE. Locate and start Eclipse (or Eclipse-based) IDE.

1.1.1 Locate the Eclipse folder.

1.1.2 Start Eclipse by double clicking on the eclipse.exe icon (as highlighted in the image

below).

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 3

1.1.3 Open your workspace. Type in C:\Users\<your username >\workspace and click the

OK button.

 Note: As noted in the past labs, you may use an alternate location for your workspace, but the

labs will always reference this location (c:\users\[your username]\workspace) as the default

workspace location.

1.2 Import the new Maven Project.

1.2.1 Select File>Import… from the Eclipse menu bar.

Gateways - Lab 8

4 Copyright © Intertech, Inc. 2014 Rev: 21

1.2.2 Locate and open the General folder in the Import window, and then select Existing

Projects into Workspace Project from the options. Now push the Next> button.

1.2.3 In the “Import” window, use the Browse… button to locate the lab8-gateway-starter

project folder located in ExpressSpringIntegration\lab8 (this folder is located in the lab

downloads). Make sure the project is selected, and the “Copy projects into workspace”

checkbox is also checked before you hit the Finish button (as shown below).

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 5

1.3 Explore the project. Examine the project for the Spring Integration components

that are already present.

1.3.1 Examine the Startup.java. Expand the src/main/java folder in the Project Explorer

view, and open the Startup.java file by double clicking on it.

1.3.2 Examine the main() method of Startup. The Startup’s main() method creates a SI

message (containing a String payload) and then pushes the message onto the request

channel of the SI application.

public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

 ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 MessageChannel channel = context.getBean("requestChannel",

 MessageChannel.class);

 Message<String> message = MessageBuilder.withPayload(

 "Hello brave new world").build();

 channel.send(message);

 context.close();

}

1.3.3 Note, however, that the Startup class must import many of the SI types – therefore

causing a type coupling to SI. Think of Startup as an application you wish to keep

independent of SI. How? With a gateway.

Gateways - Lab 8

6 Copyright © Intertech, Inc. 2014 Rev: 21

1.3.4 Examine the SI configuration. Expand the src/main/resources/META-INF/spring

folder in the Project Explorer view, and open si-components.xml file by double clicking on it.

The chief component in the si-components.xml file is a Pig Latin transformer. String

messages from the requestChannel (placed there by Startup) are sent to the transform

where the String payload is translated to Pig Latin and then placed in a new message in the

replyChannel. A service activator displays the Pig Latin translation to the Console view.

Below is the EIP diagram of the application as it currently stands.

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 7

Step 2: Test the Tightly-Coupled SI Application

2.1 Test the application. Test the application to see the Startup application create a

String payload message (“Hello brave new world”) and send it into the SI system

for Pig Latin transformation.

2.1.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu.

2.1.2 Check the Console view for results.

2.2 Unlike other applications, there is not infinite loop in this application. Startup

closes the Spring application context and ends on its own. So, there is no need to

terminate the application.

Gateways - Lab 8

8 Copyright © Intertech, Inc. 2014 Rev: 21

Step 3: Create Gateway Interface

The gateway interface is meant to hide the rest of the application from SI or other

messaging details. In this step, you create the gateway interface, which SI implements (as a

proxy) at runtime.

3.1 Create an interface that well serve as the façade to the SI application.

3.1.1 Locate the com.intertech.lab8 package, right click on it and select New > Interface

from the resulting menu.

3.1.2 In the New Java Interface window, enter PigLatinService as the interface name and

then press the Finish button.

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 9

3.2 Code the PigLatinService interface.

3.2.1 Add a translate() method to the interface. The translate method should take the

English string to be translated to Pig Latin and it should return the translated Pig Latin

String.

String translate(String english);

3.2.2 Note that the interface makes no imports – in particular no imports of SI types.

3.2.3 Save the interface and make sure there are not compile errors.

Step 4: Add and Configure the Gateway

In this step, define a gateway component using the interface created above. Spring

Integration provides org.springframework.integration.gateway.GatewayProxyFactoryBean

that generates a proxy for that service interface.

4.1 Add the Gateway SI component.

4.1.1 Locate the si-components.xml file in src/main/resource/META-INF/spring and open

it by double clicking on the file.

4.1.2 Add a new gateway component using the PigLatinService interface and defining its

default request and reply channels as shown below.

<int:gateway id="latinService"

 service-interface="com.intertech.lab8.PigLatinService"

 default-request-channel="requestChannel" default-reply-

channel="replyChannel" />

 Note: The reply channel is optional, but in this case, you want the Startup application to

receive the translated String text.

4.2 Modify Startup.java to use the gateway.

4.2.1 Locate, open, and explore the Startup.java class in the com.intertech.lab8 package by

double clicking on the file in the Package Explorer.

Gateways - Lab 8

10 Copyright © Intertech, Inc. 2014 Rev: 21

4.2.2 Comment out or remove the lines of code in the main() method that places the

message into the SI request

public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

 ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 // MessageChannel channel = context.getBean("requestChannel",

 // MessageChannel.class);

 // Message<String> message =

 // MessageBuilder.withPayload("Hello brave new world").build();

 // channel.send(message);

 context.close();

}

4.2.3 Now add lines of code right before the context close that call on the gateway to

invoke the PigLatinService. Capture the return translated String from the service and

display it using standard out (shown below).

public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

 ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 // MessageChannel channel = context.getBean("requestChannel",

 // MessageChannel.class);

 // Message<String> message =

 // MessageBuilder.withPayload("Hello brave new world").build();

 // channel.send(message);

 PigLatinService service = context.getBean("latinService",

 PigLatinService.class);

 System.out.println(service.translate("Hello brave new world"));

 context.close();

}

 Note: if you get stuck or feel like not typing in all the code yourself, you will find a working

copy of the final Startup.java file at ExpressSpringIntegration\lab8\lab8-gateway-solution.

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 11

4.2.4 Remove the unnecessary Spring Integration imports in the Startup class by hitting

Control-Shift-O. The class (representing your application that wants to be loosely coupled

from SI or any messaging system) should now contain only an import for the Spring

container.

import

org.springframework.context.support.ClassPathXmlApplicationContext;

4.2.5 Save the class and make sure there are no compile errors in the project.

4.3 Remove the standard-output-displaying service activator.

4.3.1 Since the gateway returns the translated String to the Startup application, the

service activator is no longer needed. Comment out or remove the service activator and

associated Spring bean in si-components.xml.

<!-- <int:service-activator ref="printingSA" -->

<!-- input-channel="replyChannel" /> -->

<!-- <bean id="printingSA" class="com.intertech.lab8.PrintingSA"/> -->

4.3.1 With the completion of the gateway and removal of the service activator, the SI

application can now be represented by the Wolfe and Hohpe EIP model below.

4.4 Save the configuration file and make sure there are no errors in the file.

Step 5: Test the Loosely-Coupled SI Application and the Gateway

5.1 Test the application. Again, test the application to see the Startup application

create a String payload message (“Hello brave new world”) and send it into the SI

system for Pig Latin transformation.

5.1.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu.

Gateways - Lab 8

12 Copyright © Intertech, Inc. 2014 Rev: 21

5.1.2 Check the Console view for results. The application should behave the same way and

produce the same results. The difference is that the application is now removed from the SI

API.

5.2 As mentioned previously, there is not infinite loop in this application. Startup

closes the Spring application context and ends on its own. So, there is no need to

terminate the application.

Step 6: Asynchronous Gateway

While the application (Startup.java) is now void of SI knowledge, there is a new problem to

resolve. The gateway, as designed to this point in the lab, is synchronous. That is, the

application makes a request of the gateway (and the SI system under the covers) and

blocks waiting for a return from the gateway. In this simple example, that is not to terribly

bad since the String sent to the translation service is small and the work accomplished by

the translation server and the SI components gets accomplished quickly. Imagine that the

Spring Integration path was much larger with many more tasks (filtering, enriching,

transforming, etc.) to be accomplished in the path. In this case, the application could be

waiting for quite a while. To change this what is needed is a gateway that operates

asynchronously. That is, the application can make a request of the gateway service and

allow the SI system to take as long as it needs to respond without hampering the

application from continuing to work. At a designated time of the application’s choosing, it

should be able check for and get the response from the gateway service. In this step, you

make the PigLatinService asynchronous.

6.1 Modify the gateway. Make the gateway service method return a Future.

6.1.1 Locate, open, and explore the PigLatinService.java interface in the

com.intertech.lab8 package by double clicking on the file in the Package Explorer.

6.1.2 Alter the return type of the translate() method from String to Future<String> as

shown below. A Future is not a Spring Integration type but rather a Java concurrency type

that represents a result of an asynchronous computation to be returned in the future.

Future<String> translate(String english);

6.1.1 Add the necessary import for Future to the interface by hitting Control-Shift-O.

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 13

import java.util.concurrent.Future;

6.1.2 Save the interface and make sure there are no compile errors in the project.

6.2 Modify the application to use the Future.

6.2.1 Locate, open, and explore the Startup.java class in the com.intertech.lab8 package by

double clicking on the file in the Package Explorer.

6.2.2 In the main() method, capture the Future object returned by the gateway service.

Then, call on the Future for return the results with a call to get(). Alter the

System.out.println() call to print that return String to the standard output as shown below.

PigLatinService service = context.getBean("latinService",

 PigLatinService.class);

Future<String> future = service.translate("Hello brave new world");

// do more work here in a real application

String serviceOutput = future.get(5000, TimeUnit.SECONDS);

System.out.println(serviceOutput);

 Note: In a real application, the application is free to go about doing other work and is not

blocked when the call to translate() is made. The call to get() takes parameters to inform the

system how long to wait, if necessary, to retrieve the results from the asynchronous process –

which in this case is the return from the SI components.

6.2.3 Add the necessary Java concurrent imports to the class by hitting Control-Shift-O.

import java.util.concurrent.Future;

import java.util.concurrent.TimeUnit;

6.2.4 Save the class and make sure there are no compile errors in the project.

Gateways - Lab 8

14 Copyright © Intertech, Inc. 2014 Rev: 21

Step 7: Test the Asynchronous Gateway

7.1 Test the application. Again, test the application to see the Startup application

create a String payload message (“Hello brave new world”) and send it into the SI

system for Pig Latin transformation – this time in an asynchronous fashion.

7.1.1 Locate the Startup.java file in the source folder. Right click on file and select Run As

> Java Application from the resulting menu.

7.1.2 Check the Console view for results. The application should behave the same way and

produce the same results.

To see the impact of your change, have the application do more work (for example a long

running loop) in the toPigLatin() method of the PigLatinTransformer class. The application

can continue to work after calling on the service and still receive the SI return without

impact.

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 15

Lab Solution

si-components.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-

file="http://www.springframework.org/schema/integration/file"

 xmlns:int-

mail="http://www.springframework.org/schema/integration/mail"

 xmlns:int-

xml="http://www.springframework.org/schema/integration/xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int-

stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-

integration.xsd

 http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream.xsd

 http://www.springframework.org/schema/integration/file

http://www.springframework.org/schema/integration/file/spring-

integration-file.xsd

 http://www.springframework.org/schema/integration/xml

http://www.springframework.org/schema/integration/xml/spring-

integration-xml.xsd">

 <int:gateway id="latinService" service-

interface="com.intertech.lab8.PigLatinService"

 default-request-channel="requestChannel" default-reply-

channel="replyChannel" />

 <int:channel id="requestChannel" />

 <int:transformer input-channel="requestChannel"

 output-channel="replyChannel" ref="pigLatinTransformer" />

 <bean id="pigLatinTransformer"

class="com.intertech.lab8.PigLatinTransformer" />

 <int:channel id="replyChannel" />

 <!-- <int:service-activator ref="printingSA" input-

channel="replyChannel"/> -->

 <!-- <bean id="printingSA" class="com.intertech.lab8.PrintingSA" />

-->

</beans>

Gateways - Lab 8

16 Copyright © Intertech, Inc. 2014 Rev: 21

Startup.java (pre-Asynchronous work)

package com.intertech.lab8;

import

org.springframework.context.support.ClassPathXmlApplicationContext;

public class Startup {

 public static void main(String[] args) {

 ClassPathXmlApplicationContext context = new

ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 // MessageChannel channel = context.getBean("requestChannel",

 // MessageChannel.class);

 // Message<String> message =

 // MessageBuilder.withPayload("Hello brave new world").build();

 // channel.send(message);

 PigLatinService service = context.getBean("latinService",

 PigLatinService.class);

 System.out.println(service.translate("Hello brave new world"));

 context.close();

 }

}

PigLatinService (pre-Asynchronous work)

package com.intertech.lab8;

public interface PigLatinService {

 String translate(String english);

}

Gateways - Lab 8

 Copyright © Intertech, Inc. 2014 Rev: 21 17

Startup.java (post-Asynchronous work)

package com.intertech.lab8;

import java.util.concurrent.Future;

import java.util.concurrent.TimeUnit;

import

org.springframework.context.support.ClassPathXmlApplicationContext;

public class Startup {

 public static void main(String[] args) throws Exception {

 ClassPathXmlApplicationContext context = new

ClassPathXmlApplicationContext(

 "/META-INF/spring/si-components.xml");

 PigLatinService service = context.getBean("latinService",

 PigLatinService.class);

 Future<String> future = service.translate("Hello brave new

world");

 // do more work here in a real application

 String serviceOutput = future.get(5000, TimeUnit.SECONDS);

 System.out.println(serviceOutput);

 context.close();

 }

}

PigLatinService (post-Asynchronous work)

package com.intertech.lab8;

import java.util.concurrent.Future;

public interface PigLatinService {

 Future<String> translate(String english);

}

